

Not just a Data Analyser, Signature Analyser, or Logic Analyser, but...

...all three in one very portable box: The 308 Analyser
To find out more about the NEW 308 Analyser, clip the coupon, \quad Please send me full information on the New 308 Analyser. \rightarrow simply phone. We'll be pleased to help.
Tektronix UK Limited, PO Box 69, Coldharbour Lane, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141
Regional Telephone Numbers; Livingston: 32766, Maidenhead: 73211, Manchester: 428 0799, Dublip: 508132

Tektronix

Tektronix UK Limited, PO Box 69, Coldharbour Lane, Harpenden,
Herts. AL5 4UP. Te:: Harpenden 63141
| Name.
| Position.
| Company.
Address.

Telepho

WIRELESS WORLD, MARCH 1980

Front cover is a photograph,
by Paul Brierley, of the printed-circuit pattern on a Motorola microcomputer
board.
in OUR NEXT ISSUE
Digital capacitance meter
is a $31 / 2$-digit inst igs a $31 /$-digitit instrument,
with ful-scale with full-scele readings of
200 pF to 20 F .
How serious is multipath distortion? An investiga-
tion into this offect in v.h.f.ff.m. sound broadcasting and results of
recent research. Shared-memory v.d.u.
with opto-electronic interface is an economic and officient poriphomal for a home computer.

comput
comput
\(\left.\left.$$
\begin{array}{c}\hline 39 \text { Education for integration } \\
40 \text { Pulse-induction metal detector } \\
\text { by J. A. Corbyn }\end{array}
$$\right] \begin{array}{c}45 Non-anechoic acoustic measurement

by R. N. Grubb\end{array}\right]\)| 50 Clock timer - 2 |
| :---: |
| by R. D. Clemow and T. C. Carden |

wireless
 world
 \section*{}

ELECTRONICS/TELEVISION / RADIO/AUDIO
MARCH 1980 Vol 86 No 1531
\qquad

39 Education for integration
by J. metal detector
hoic acoustic measuremen
Y. R. Clemow and T. C. Carden

WIRELESS WORLD MARCH 1980
Faultus on specification and we'll eatit. oscillators and filters, whether standard rang or custom-built, could be the answer to you frequency control problem. Consult u

DON'T GAMBLE WITH PERFORMANCE

BUY

LEVELL TESTERS

Tests bipolar transistors, diodes and zener diodes. Measures checked from to 0.5 AA at 2 V to 150 V . Current gains are 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $I \mathrm{C} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is
TPANSISTOR PANG
TRANSISTOR RANGES (PNP OR NPN)
CBO ${ }^{\& 1} \mathrm{I}_{\mathrm{EBO}}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s. acc. $\pm 2 \mathrm{~V}$. .s.d. 40 V at volages of $2 \mathrm{~V}, 5 \mathrm{~V}$
$10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 50 \mathrm{~V}, 6 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$ 120 V, and 150 O a cc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to
10 HA with fall a $100 \mathrm{HA}<5 \%+50 \mathrm{mV}$.
ov $100 \mathrm{fs} . \mathrm{d}$ acc $+2 \% \mathrm{fs}$.
10 V or 100 V f.s.d. acc $\pm 2 \% \mathrm{f}$.s.d. $\pm 1 \%$ at
currents of $10 \mu \mathrm{~A}, 100 \mu A$ and $1 \mathrm{~mA} \pm 20 \%$. OnA $100 \mathrm{nA} 1 \mathrm{AA} 10 \mathrm{mAfs} \pm 2$ s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{AA}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$. $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
3 inverse scales of 2000 to 100,400 to 30 and
00 to 10 convert I_{B} into $h_{F E}$ readings.
$v_{B E}$:
V f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions
${ }^{0} \mathrm{~h}_{\mathrm{FE}}$ test.
1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$
DIODE \& ZENER DIODE RANGES
V_{Z} : Breakdown ranges as $\mathrm{BV} \mathrm{V}_{\mathrm{CBO}}$ for transistors.
$V_{D F}: \quad$ VF.s.d. acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$
min $£ 145$

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a
maximum value of 3 mA for safety and capacitors are maximum value of 3 mA for safety and capacitors are
automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at 25 V 5 V avd 10 V . $10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA . CURRENT RANGE
100pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
MEASUREMENT TIME
<3s for resistance TIME
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position. RECORDER OUTPUT
\checkmark per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER. LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

AC/DC 8 MHz OSCILLOSCOPE

You save because we design You save because we design,
manufacture, sell and senvice Tandy have over 7,000 ostores snd dealershi
worldwide. Over 2,500 specifically for or by Tandy y 16 factories
around the word The Huality fof our
products has been achieved by over

WIRELESS WORLD, MARCH 1980

| WICROCHIIPS AT MICRO |
| :--- | :--- |
| PRIGS |

Measure Resistance to 0.01Ω
At a Price that has no resistance at all New/Elenco Frecision Digital Multimeter M1200B

ONLY £55

YOUR OPPORTUNITYTM BUY THIS SUPERB

DMM AT THIS PR
FORALMTED
PERIOD ONLY.
FULLV GUARANTEEC
MMTELCASEE
EX STOCK DELVERY

THE ULTIMATE IN PERFORMANCE VOLTAGE TO 100 MICROV TO 0.01 OHMS TO 1 MICROAMPS AT LOWEST EVER PRICE!
FEATURES

- $3^{1 / 2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- High input a 0.01 a resolurion
- High acsuracy achieved with precision resistors,
not unstable trimpots
- Input overload protected to 1000 V (except

200 mV scale to 600 V)
Auto zeroing, autopolarity

- Mains (with adaptors not supplied) or battery
operation-built-in charging circuitry for NiCads
- Overrange indication

Hi Low power ohms, Lo for resistors in circuit,
Hi for diodes

SPECIFICATIONS:	
DC Volts	Kange $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
AC Volts	Overload protection 1,000 volts max
	Range 200mV, $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution. 1 mV Overload protection 1000 V max, 200 mV scale 600 V
DC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$, 2 mmp .
	Accuracy $1 \%, \pm 1$ digit, Resolution 1 Microamp
	Overload protection -2 amp fuse and diodes
AC Current	Range 2mA, $20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
	Overload protection -2 amp fuse and diodes
Resistanc	Range $20,200,2 \mathrm{~K}$, $200 \mathrm{~K}, 2 \mathrm{Meg} .20 \mathrm{Meg}$.
Enviro	Accuracy $1 \% \pm 1$ digit, Resolution 01 ohms
	Temp coefficient $0^{\prime \prime}$ to $30^{\prime \prime} \mathrm{C} \pm .025 \%^{\prime \prime} \mathrm{C}$ Operating Temp $0^{\prime \prime}$ to $50^{\circ} \mathrm{C}$ Storage $-20^{\prime \prime}$ to $00^{\circ} \mathrm{C}$
General	Mains adaptor: 6.9 Volts © 200 mA (not supplied)
	4 C size batteries (not supplied)
	Size $81 / 4 \times 5 \% \times 21 / 4 \quad$ Weight $2 / / 2 \mathrm{lbs}$.

Tomactin-Zand Electronics Lio
| $\begin{aligned} & \text { st Floor. Unit 10. East Block } \\ & 38\end{aligned}$

Name
Address
$\mathrm{L}_{-}-\boldsymbol{-}$
Also aviable from ELENCO PRECISION Sole UK Distributor
retail shop:

301 Edgwere Road Maclin-Zand Electronics Lto
38 Mount Pleasant, London WC1XOAP
(C) N Zand Tel. 01-837 1165

MICRODIGITAL1980

AppleITlus Nascom2

Bigger and better than ever!

Commodore NAS Corner

 Media

NICRODIGITAL

The Mighty Microdigital

Microdigital Software Announce

These packeges are now available, demonstrations on request
Ring
Thess $1-22725255$ and ask tor Graham Jones SSotware Manager) Ring 951.2272535 and ask for Graham Jones (Sottware Manager)
These are fully tested systems which run on the Apple ITT 2020 with one or two disc
drives
Liverpool SoftwareGazette

If QUAD amplifiers are so perfect, why does it still sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones.

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loud-speakers or headphones however good these components may be

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PEI8 7DB. Tel: (0480) 52561.

QUAD

for the closest approach to the original sound

OUAD is a registered Trade Mark

The sound o

We wouldn't knock our rivals.
After all, it was they who inspired us to design and manufacture our own power loudspeakers... because of the frustration we experienced when trying to obtain power loudspeaker components for our enclosures. Nobody could
consistently supply components to the exacting HH standards of quality, power and performance - at any price.
So, our designers started from a clean drawing board and were prepared to defy convention in the construction of superiorpower loudspeaker. Our powerful
computer calculated optimum cone

profiles, whilst our scientists pushed back the frontiers of adhesives technology to develop new construction methods. Then we
best to destroy these new products (that was the hardest part.) Now this range of superior power loudspeakers, crossover networks, "bullet" radiators, compression drivers and horns can be purchased at sensible prices from HH dealers. In their new and convenient packs you
applications book, full of useful hints.

Send for our brochure, so you can convince yourself
why our components are superior,
by following our logical
scientific arguments.
scientific arguments. Then you'll realise wh
we never need to
we never need to
knock our "rivals"
Power to the Performer.
HH Acoustics.

Carston Electronics

Carston Electronics Limited shirey House.27Camden Road. Londontw Contact David Kennedy
or Noel Jennings 1-2675311/2

Hameg the mame for quality, performance and value in oscillosidprs. Advanced design optimising the use of both integrated circuits and discrete components ensures reliability.
Just a glance at the specification chart will

Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester Dual Trace DC-20 MHz $5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display
Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep

Dual Trace DC-50 MHz, $5 \mathrm{mV} / \mathrm{cm}$
Sweep Speeds $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$ plus Sweep Delay
Dual Trace DC - $\mathbf{5 0} \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$
$20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$, Sweep Delay and Storage

We may be a new name to you, but each instrument is backed by over 21 years experience in oscilloscopes.

Distributed by

Electronic Brokers
49/53 Pancras Road
London NW1 20B
Tel. 01-837778

ELECTRONIC SUPPLIES LIMITED

SCOTCHSTORAGE MODULE THE MEMORY-SAFE.

When you entrust your records to a disk storage and retrieval system, you need to be you can have is a Scotch Storage Module. Because built-in to every Scotch Storage Module is all the experience of magnetic coating technology which is why 3M are
known as the Magnetic Media Specialists. known as the Magnetic Meaia Specialist
Like the unique 'Crashguard' binder formulation, which protects you from data checks, damaged disks and heads, downtime and data loss. for all your media supply needs. You can order from us direct, or from our network of local distributors.
\cdots
HMCOMPUITR Find out more. The Minicomputer Media Service,
3M United Kingdom Limited. FREEPOST. Brackne 3M United Kingdom Limited, FREEPOST, Bracknell,
Berkshire, RG12 1BR. Tel: Bracknell (0344) 58502.

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten. replay a selected portion of tape to find out what was said by who, to whom ... and when. And 'when' can be vital.
Equally vital, particularly in emergencies when every second counts, is the ability to without time-consuming multipl, precisely, automatically. Wesswork certainty-and without time-consuming multiple knob-twiddling aided by guesswork.
Racal Recorders has recognized this need and produced TIMESEARCH - designed specifically for its ICR range of multi-channel communications recorders - and providing just these facilitie
TIMESEARCH can generate a coded time reference signal of crystal accuracy and ndex it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time. In communications recording, the future becomes the present; the present becomes
the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.

Racal Recorders always on the right track ,

The New MSI -

The MSI System 12 compurer system combines the popular MSI 6800 proces sor ... complere with 56 K of memory. and the new MSI HD-8/R disk system fixed/removable hard disk system in one compact desk unit.
Ideal for business applications, the MSI System 12 gives you a large capacity hard disk for mass storage, and a floppy disk system for program loading, back up, software updares and exchanges. System 12 will use MSIDOS, SDOS or FLEX operating systems. A variety of programs is available including Multi-User BASIC and a complete Management/Accounting package.
Complete with industry standard CRT and high speed printer, the MSI System 12 is one of the most powerful microcomputer systems available

STRUMECH PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS, WEST MIDLANDS.

WW - 084 FOR FURTHER DETAILS

Quantum Electronics

NEW PRODUCTS - NEW PRODUCTS

MOVING-COIL \& PRE-AMP MODULES

mc1

POWER AMP MODULES AND SUPPLIES

 Expors: We can deal efficiently with orders to any coury per
Equirement torar dealefefticiently with ordersis to any country. Please write with your specitic 1A STAMFORD STREET, LEICESTER. Tel 546198 OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel. 1 -302-798--7932 MINI TELEPRODUCTOR, BOX 12035 , S. 1500 i2, UPPSALA 12, SWEDEN

The Thinking Cap

Now you can measure, sort and check capacitance in less time, with more accuracy.
The new 3001 Digital Capacitance Meter is yet another Our back panel ;as more facilties too. An easy interface fo
superb instrument from C S.C Designed specifically for professionall laboratories. test and production benches, it offers All in a weill designed, rugged unit for only $£ 155^{*}$. As usual. we continued where everyone else left off. Behind the $31 / 2$-digit LED display is a unique Dual Threshold circuit that gives an accuracy of 0.1% of the reading (0.5% in the two . highest ranges). Other features include nine overlapping ranges, up to 0.1999 F, with down to $1 p$ F resolution. automatic over and absorption. Once the range is selected, measurement is speedy

Tomorrows tools for todays problems

C.S.C. (UK) Limited,

Tel: Saffron Waldien (0799) 21682 Telex: 817477
remote display, sorting ard control accessories, and, to A great deal of thought has been put into the accessories
and which include a production test fixture, a Limits Unit. a variety ol test cables, and an extremely comprehensive manual covering not only measurement on capacitors but also applications to lesting other types of components and even cables. worth thinking about.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK
WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

CPR 1-THE ADVANCED PRE-AMPLIFER. The besto preampififer in the UK. The

 PRE-AMP KIT

CRIMSON ELEKTRIK
1A STAMFORR STREET, LEIICESTER LE1 GNL. Tol. (O533) 553508

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRays INN ROAD, w.c. 1 Phone: 01/837/7937 WW - 047 FOR FURTHER DETAILS

CAMBRIDGE LEARNING ENTERPRISES	Instruction Courses
Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will language of the small computer and the most easy-to-learn widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real of graded hints. In 60 straightforward lessons you will learn the five essentials ofprogramming: problemn definition, flowcharting, debugging, clear	
Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of computers, problemdefinition.	
actronics	
with information, diagrams and questions designed to lead you	
step-by-step through number	
an understanding of the design and operation of calculators and	
(e)	
Biook. 6 CPU; memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming, assemblers computers: executive programs operating systems	
GUARANTEE - No risk to you If you are not completely satisfied your money will be refunded on return of the books in good condition.	
Please send me:- Computer Programming in BASIC (4 books) @ 87.50 ...Design of Digital Systems (6 books) @ $£ 11.50$ All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £15, DEDUCT £2 I enclose a cheque/PO payable to Cambridge Learning Enterprises for E .	
or please charge my Access/Barclaycard	
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number. Name	
Address	
Cambridge Learning Enterprises, Ünit 38, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.	

The New FM/AM 1000swith SpectrumAnalyser-wecall it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

COMBIWRAP
A high precision, low cost hand tool which performs three functions

\& TRTJO TEST

the range has increased -
THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square
Cormat. internal graticle, PDA tube for accurate bright display. A new feature is the
 show the delay yosition. AA s you can soee from closes study of the photorapaph, the CST 1830
has all the facilities you could reauire in a high performance instrument but for more has allthe faciitities y ou could reacuire in a a hight
detail, simply ask us tor a comprehensive leatiet.

 CS $\mathbf{1 8 3 0}$ only $\mathbf{£ 4 5 5}+$ VAT includes 2 probe

THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS 157 The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder

 video facilities is too great to exp
ker
tul
story on the CS1572.

 CS 1572 only $\mathbf{£ 4 2 5}+$ VAT, includes 2 probes

THE CS 157730 MHz at $2 \mathrm{mV}+$ Signal Delay The most popular scope in the range
The CSS 157 is without doubt. our most popular oscilloscope and hundreds of satistied
 Fixed signal delay is provided by a helix delay line which allows viewing of the leading

 CS1577 only $£ \mathbf{£ 1 0}+$ VAT, includes 2 probes.

THE CS1575, unique dual trace 4 function Audio Scope The CS 1575 is a unique tool for the audio engineer. LI features the normal facility of dual
trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on two channels, , it can simultaneously display the phase angle beetween them and
 Absoluelly ndispensabbe to the professional audio engineer, the CS1 1575 is now in use
allover the worrd. See it in action or send for complete details. CS 1575 only $£ 235$ + VAT.
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER

$£ 70+$ VAT
for further details and ex stock delivery contact
LOWNE
$=$ CHESTERFIELD ROAD, MATLOCK, DERBYS.

0629-2430 - TELEX 377482

Go for Wow/Flutter standard from Bang \& Olufsen when precision, versatility and good value for money are high

The Bang \& Olufsen microprocessor quartz controlled Wow and Fluttermeter calibrator is a compact low cost device, especially designed to calibrate Wow/ Fluttermeters with great accuracy according DIN, IEC, CCIR and IEEE standards. The application in this microprocessor controlled instrument has rendered calibration obsolete. Therefore the first and the last produced WFC 1 will be exactly alike!

Functions:
Center frequency: 3 KHz or 3.15 KHz . Sinus and Squarewave outputs.
Drift: (4 ran generator: (5 ranges)
Modulation sior, to check the meter ballistics.
Mccuracy and st generator
Accuracy and stability for all functions $<50 \mathrm{ppm}$
Option 1 portable
Option 1 portable 2 adaption to your mains supply.
Bang \& Olufsen Instruments A solid investment

The pre-eminent pick-up arm

Whilst able to explore the best of the present, the Series III precision pick-up arm anticipates the greater engineering elegance of impending miniature. cartridges which may weigh as little as one and a half grammes.
Its unique patented balance system minimises mass and inertia, presenting optimum conditions for even the most delicate transducer.

No other pick-up arm is as versatile, a reason why the Series III is already playing its part in the development of tomorrow's cartridges.

Choose it for your listening pleasure today with confidence in the future.

Series III precision pick-up arm
The best pjck-up arm in the world

Write to Dept 0655, SME Limited, Steyning, Sussex, BN4 3GY, England

RADIOTELEPHONE EQUIPMEN Pye Westminster W15AM high band $\&$ low band
available. Sets complete and in good condition but are less speakers, mikes, cradles and LT leads. (sets
only) $£ 70.00$ each. Pye Westminster W15AM mid band 6 channel
similar to above (sets only) $£ 45.00$ each. simila to above (sets only) \&45.00 each.
Pye Westminser W15ME (Boot Mount) low band
completete with contro gear and accessories, good Pye Westminster W15AMB (Boot Mount) low band
complete e ivth control gear and accessories, good
condition $£ 80.00$ each.
Pye Westminster W30AM low band, sets only no
control gear, complete and in good condition.
\& 45.00 each. Pye Westminster W30AM mid band, sets only good Condition. $£ 35.00$ each.
Pye Base Station F27 Low \& High band, few only at
E75.00 each.

 the

 Pye Reporter MF6AM High band mobile, very good
condition £200.00.

 iC AUDIO AMP. PCB. Output 2 watts into 3 ohm
peaker
. mole high, with integral heatsink ICAD CHARGE CONVERTR PCB. (Low
power inverter). Size $4 " \times 11_{4} a^{\prime \prime} \times 11^{\prime \prime}$ high. i2v do

 £2.00 each. SSB XTAL FILTERS (2.4 kHz Band-
10.7 MHz St
width) Low imp. type. Carrier and unwanted side-

 5p each
BSR AUTOCHANGE RECORD PLAYER

IDICON SCAN COILS Transistor type, but no
datal complete with vidicon base 66.50 each. Brand

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU
Crewkerne (0460) $74433 \quad$ Telex 46283 inface g Crewkerne (0460) 74433 Telex 46283 inface g
wW-078 FOR FURTHER dETALIS

WIRELESS WORLD, MARCH 1980

 Per Kilo. Noltage electrolytics. Pack of
 Brand new \& boxed $£ 2.00$ each.
MODERN TELEPHONES Type 746 with dials,

 Eatials. SAE Forl lists
ISEP SLOTED HORIZONTAL RAIL avail
ITS

 each
FFRANTI MICCOSPOT CATHODE RAY
TUBES TyPe $3 H / 1010$ Suitable for Photographic

 VAT.
VRAPR super-chrome $1 /{ }^{\prime \prime}$ "square drive socket seits, 38 piece, 9 AF hexagon
sockets, 3 AF biscquare sockeets, ,11 MM hexagon sockets, 9 BA hexagon

 safety guard. Price $£ 6$
As from Sat. 3rd February 1980 we will hold weekly auctions on Saturday
 am. So come al
be available.
B. BAMBER

ELECTRONICS

Callers welcome by appointment
S.E. for al enauries
TERMS OF BUSINESS: CASH WITH ORDER
TERMS OF S.A.E. for all enquaries
Carriage:
Packing and carriage charges for orders of under
 Ordeds eexceeding $£ 5.00$ but less than $£ 20.00$
invorice value
Over 20.00 carriage paid.

Waveform synthesis, with pulse width modulation to regulate the output voltage, has been used in high power inverters for some time.
Now, for the first time, CARACAL have developed this technology to produce a complete range of high quality sine wave inverters
from 120 VA to 1000 VA AT COMPETITIVE VALUE-FOR-MONEY PRICES. The result is a very low distortion output waveform which is very stable, both in voltage and frequency, over all load and battery The result is a very
voltage conditions.
And that is not all - replacing obsond fand transformers has resulted in lighter weight and high efficiency on both part and full And that is not all - replacing obsoles
loads, with low standby current drain
-PHONE OR WRITE FOR FULL DETAILS-
CARACAL ENGINEERING
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDS. TEL. 0767-81361

RECHARGEABLE BATTERIES

trade enquiries welcome
Full range available to replace 1.5 voit dry cells and 9 volt PP type
batteries. SAE for lists and prices. $£ 1.25$ for booklet. "Nickel
Cadium Power." "Write or call at:
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands $021-3549764$.
See full range at TLC, 32 Craven street, Charing Cross, Londoñ
wW-070 FOR FURTHER DETAII

EUROPE'S FASTEST SELLING
ONE BOARD COMPUTER

- 8 MHz Super Quality Modulators $\mathrm{E4.90}^{6}$ \begin{tabular}{ll}
\hline $\mathbf{6 M H z}$ Standard Moduluators \& $\mathbf{£ 2 . 9 0}$

\hline C 12 Computer Grade Cassettes \& 10 for $\mathbf{£ 4 . 0 0}$

\hline

C12 Computer Grade Cassettes 10 for $£ 4.00$

\hline Super Multi-rail P.S.U. $+5-5+12 \mathrm{~V}$ £29.50

\hline
\end{tabular} $\begin{array}{ll}\text { Nascom I with Nas-sys } & \text { Special Price } \\ \text { Kit } & \text { £125.00 }\end{array}$ Assembied $\quad £ 140.00$ $\frac{\text { ETI Breakout Game - Chip and PCB } \quad \mathbf{~} 9.90}{\text { S100 Expansion Motherboard for }}$ S100 Expansion Motherboard for \quad E39.00

Nascoml $\frac{\text { Nascoml }}{\text { Anadex Printer Paper - } 2000 \text { sheets } £ 25.00}$ $\frac{\text { Anadex Printer Paper - } 2000 \text { sheets }}{\text { Floppy Disks } 51 / 4.0 \text { Hard \& Soft }}$

 Lexicon Language Translator Lexicon Language Translator $\quad \mathbf{£ 1 2 5 . 0 0}$ \begin{tabular}{ll}
Ledules for Lexicon \& $\mathbf{E 2 9 . 0 0}$

\hline Eprom Boards \& $\mathbf{E 6 3 . 0 0}$

\hline

\hline BK Static Ram Boards - S100 \& $\mathbf{£ 1 1 0 . 0 0}$

\hline

Grandstand Video Game $\quad \mathbf{5 5 9 . 0 0}$

\hline
\end{tabular} Cartridges for Grandstand $\quad £ 11.99$ George Risk Ascii Keyboard. $£ 39.00$

Cartridges for Atari	
- Full Range in Stock	$\mathbf{£ 1 3 . 9 0}$

Interface PET IEEE - Centronics Paralleel
Not decoded

- Ideal for home, personan and dusiness computer system

LARSHOLT ELECTRONICS

iif you require im imaculate electronics in a professionally designied

 $\underset{\substack{\text { LARSSHOLT } \\ \text { Phicss the }}}{\text { the answer. }}$ | Prices: |
| :--- |
| Sinasater |
| Auciomster | E86.95

$\varepsilon 79.00$
$+E 13.04 \mathrm{EAAT}$
$\mathrm{E11.85} \mathrm{VAT}$

WW - 066 FOR FURTHER DETAIL

SIWPII AHIEAD-and steyiny there! O.E.M. PLATE POWER AMPLIFIERS
 MADE IN ENGLAND

0.1\% DISTORTION WIDE BANDWIDTH PROTECTED O/P TRANSISTORS FULL LOAD LINE PROTEGTION NO EXTERNAL COMPONENTS ONLY FIVE PINS TO CONNECT

$\begin{aligned} & \text { UNIT} \\ & \substack{\text { PAICE } \\ \text { FOR }} \end{aligned}$	100	$\begin{gathered} 250 \\ + \end{gathered}$	500	$\begin{gathered} 1000 \\ + \end{gathered}$	$\stackrel{2500}{+}$	$\stackrel{5000}{+}$
$\begin{gathered} \text { HY } 120 P \\ \text { now rms } \end{gathered}$ 8Ω	£10.30	£9.37	¢8.51	£7.74	£7.04	£6.40
HY 200P 120 W rms 8Ω	£13.18	£11.98	£10.89	$£ 9.90$	£9.00	¢8.18
HY 400P 240W rms 4Ω	£19.26	£17.51	£15.92	£14.47	£13.16	£11.96

$$
\begin{aligned}
& \text { Sizes- } \\
& \text { HY 120P and HY 200P } \\
& \text { HY 400P }
\end{aligned}
$$

Adivisior. of IL.L.P. ELECTRONIIS Ltd., GRAMAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP (0227) 54778 : Telex 965780
WW - 067 FOR FURTHER DETAILS

"HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?"

It's easy to make mistakes when buying video equipment. from libraries or other companies? Will you want a lot

Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.
Buy the most expensive and you could literally waste thousands on features never used.
Forget compatibility and the future and you could
find yourself spending more money on extra equipment - or discarding equipment you've just bought. WIDE CHOICE. GOOD ADVICE.
Through our network of Video Centres, we at
Bell \& Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"
We answer that question by first helping you to define
how you're going to use a video system.
We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes
of duplicate tapes?

From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite Whatever it is, we make this promise.
-If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD

No matter what you buy from the Bell \& Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop.
Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Let Bell \& Howell show you the answer:

To Pieter Glas, Bell \& Howell A-V Ltd., Freepost, Wembley, Middlesex HAO 1BR. l'd like to discuss video with Bell \& Howell.
Name
Organisation
Address

JVC CAMERAS. JVC RECORDERS. JVC STUDIO EQUIPMENT. JVC MONTORS. ELECTROHOME MONITORS. FUJ VIDEO TAPE

INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE隹 Measure temperature of Air, Metals, Liquids. Machinerr. etc., etc.
Just plug-in the Probe, and read the temperature on the large oper scale meter. Supppled with carrying case, Probe and internal $11 / 2$
volt standard size battery.
 Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $500{ }^{\circ}$

HARRIS ELECTRONICS (LONDON) 38 GRAY'S INN ROAD, LONDON, WC1X 8AX 7937)

Electronic components FAST service is designed to get them to you without delay. We hold over 1300 product lines in stock for immediate
same day despatch to solve your R \& D problem or same day despatch to solve your R \&
covers active components, meters and modules, packaging and assembly and production

0703-618525 VEROSPETD
Verospeed, Stansted Road, Boyatt Woo
EASTLEIGH, Hampshire SO5 4ZY ${ }^{\text {• }}$

Thurlby PLK triple output A bench power supply system that meets today's needs

- Three fully independent Outputs, all fully floating Simultaneous digital metering of voltage and current
33/ digitit 4000 countl) meters with $1 / 2$ LED displays - 0.1% accuracy, Resolution of 0.01 volts and 0.001 amps
5 volt high current Output with overvoltage crowbar - 5 volt high current Output with overvoltage crowbar
Remote sense facility for maintained precision at high currents - Remote sense facility for maintained precision at high curre
- Fully variable voltage and current. 0 to 60 V or 0 to $\pm 30 \mathrm{~V}$

Thurlby PL Series $\begin{gathered}\text { Single, Dual and Triple } 0 \\ \text { Prices from under } £ 100\end{gathered}$

Full data and distributor list from Thurlby Electronics Ltd.,

the M97 Era IV Series pickup cartridges

Model	Stylus Configuration	Tip Tracking Force	Applications
M97HE	Nude Hyperelliptical	$3 / 4$ to $11 / 2$ grams	Highest fidelity where light tracking forces are essential.
M97ED	Nude Biradial (Elliptical)	$3 / 4$ to $11 / 2$ grams	
M97GD	Nude Spherical	$3 / 4$ to $11 / 2$ grams	
M97EJ	Biradial (Elliptical)	$\begin{aligned} & 1 / 2 \text { to } 3 \\ & \text { grams } \end{aligned}$	Where slightly heavier tracking forces are required.
M97B	Spherical	$\begin{aligned} & 11 / 2 \text { to } 3 \\ & \text { grams } \end{aligned}$	
78 rpm Stylus for all M97's	Biradial (Elliptical)	$11 / 2 \text { to } 3$ grams	For 78 rpm records.

Shure writes a new chapter in the history of affordable hi-f by
making the latest cartridge technoological breakthroughs avail able in a completet line of thigh-performance, modorately priced cartridges; the M97 Era IV Series Pickup Cartridges, available
with
everye sifferent inyterahangeable stylus contigurations to fit
The M97 Series incorporates such vanguard features as
the Dynamic Stabilizer-which simultaneously overcomes he Dynamic Stabilizer-which simultaneously overcomes
record-warp caused problems, , providese electrostatic neutral-
ization of the record surface, and effectively removes ization of the record surface, and effectively removes dust and
lint from the record and a uniuetelescoped stylus assembly
which results in lower effective stylus mass and dramatically which results in lower effective stylus mass and dramatically
improved drackability
Each of these features... and more....has been incorporated Each of these features... and more.... has been incorporated
in the five cartidgesin ite M97 Series- there is even an M97
 What's more, every M97 cartridge features a unique lateral
deflectionassembly, called the SIDE-GUARD, which hesponds
to side thrusts on the stylus by withdrawing the entire styus
 The performance of the cartridges
recorded music. Hear it you must!
NEW! M97 Series Era IV Pickup Cartridges.
NEW! M97 Series Era IV Pickup Cartridges.
Five new invitations to the new era in hi-fi.

SHUFE

Shure Electronics Limited; Eccleston Road, ww - 101 For further detais

wireless world

Education for integration

Editor:
TOM IVALL, M.I.E.R.E.
Deputy Editor: PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor: GEOFFREY SHORTER, B.S

Projects Editor: MIKE SAGIN
Phone: 01-261 8429
News Editor: RAY ASHMORE, B.SC., G8KYY hone 01-261 8043
Communications Editor: ED PARRATT, B.A.
hone $01-2618620$

Drawing Office Manager:
ROGER GOODMAN
Technical Illustrator
BETTY PALMER
Poduction \& Design:

Advertisement Conirolier
G. BENTON ROWELL

Advertisement Manager:
BOB NIBBS, A.C.I.I.
Phone $01-2618622$
AVID DISLEY
Phone 01-261 8037
barry Leary
Phone. 01-261 8515
Classified Manage
Phone 01-261 8508 or 01-261 8423
NEIL McDONNELL
Classified Advertisements)
Phone $01-2618508$
OHN GIBBON Make-up and copy
Phone 01-261 835
Publishing Director:
GORDON HENDERSON

Since a television programme put the cat among the pigeons and made the world at large believe that Karel Capek's view of the future was to
materialise in about a fortnight at the very latest, engineering persons have become accustomed to hearing references to 'chips' from the unlikeliest of sources. Cabinet
ministers, trade union leaders, industrial writers, popular magazine and newspaper columnists, television commentators - all kinds of non-engineering person never seem to tire of discussing integrated-circuit terms that imply total familiarity with semiconductors in all their manifestations.
It is quite difficult to discover the received picture of modern electronics possessed by people whose interests do
not include engineering. The crescendo of strident and frequently doom-laden prophecy, initiated by the adoption of 'the chip' as a sort of 1970s Spinning Jenny substitute, coupled with saner
(because better informed) comment from engineers, must have generated considerable confusion among those whose only present involvement is the direct or indirect provision of finance. of course, the microprocessor. Most of the others have arrived at the stage where they are thought of as components, and are consequently not newsworthy: decade counters, phase-locked loops are used in a manner almost as abandoned as were discrete transistors ten years ago, But the microprocessor has an aura of capabilities do not warrant, and which
may well be not only technically but politically perilous.
A Ludditic reaction to 'new technology', fuelled by badly disseminated information and mass possibility; the newspaper industry has already seen an illustration. The alternative is to demonstrate the respectability of the microprocessor as a down-to-earth, extremely useful, but
entirely non-occult electronic component in a programme of education carried out by people who really do know what they are talking about. We have seen far too many newspaper and television pieces whose
aim has been to describe the applications of integrated circuits in the 'wonder of modern science manner, heightening in a most irresponsible way modern man's ingrained and well-founded suspicion
of single-minded, but accident-prone technocrats.
The attitude of mind which impels otherwise reasonable people to walk out on strike when 'new technology' is discovered in the offing is unlikely to be of much assistance to anyone. If an organisation is compelled by a lack of methods of working, its customers wil simply go to another source of supply which has taken advantage of modern developments. Many people will no doubt need to change their skills, bu
there is no reason to think that a smaller total workforce will be needed in the society of the next decade. The microprocessor is not an invention of the Devil, but in the face skill of educators to prove it.

$$
\begin{equation*}
i R=-\frac{\mathrm{d}}{\mathrm{dt}}\left[B_{\mathrm{p}} \pi a^{2}+L i\right] \tag{1}
\end{equation*}
$$

If $B_{\mathrm{p}}=B_{0}$ at $t=0, B_{\mathrm{p}}=0$ at $t=\Delta t$ and $i_{\Delta t}$ is
the current at $t=\Delta t$,

$$
i_{\Delta \mathrm{t}}=\frac{\pi a^{2}}{L} B_{0}-\frac{R}{L} \int_{0}^{\Delta \mathrm{t}} i \mathrm{idt}
$$

If $\Delta t \ll L / R$, equation (2) can be approximated by

$$
\begin{equation*}
i_{\mathrm{tt}} \approx \frac{\pi a^{2} B_{0}}{L} \tag{3}
\end{equation*}
$$

If the target is given a standard form of a cylinder with radius a, height a and from an adaptation of Wheeler's formulae
$\mathrm{L}=a \times 2.07 \times 10^{-6} \mathrm{H}$
(4)

Although equation (4) is an approximaion it is sufficient for practical purposes shapes. The resistance can be calculated from

$$
R=\frac{0.289 \times 10^{-6} \times k}{\Omega} \Omega
$$

(5)
where it is assumed that the specific resistance of the metal is for gold $\left(0.023 \times 10^{-6} \Omega \mathrm{~m}\right)$ and k is the specific esistance in relation to gold. When the primary magnetic field is removed the
current in the target decays exponen tially with a time constant.

If the received signal is integrated th mean output signal level V_{m} will be

$$
\frac{1}{T_{\text {rep }}} \int_{0}^{\infty} V_{\mathrm{r}} \mathrm{dt}=
$$

The eddy current induced in the model target is then
$1.875 \times 10^{-6} \frac{r_{\mathrm{t}}^{2} r_{\mathrm{r}}^{2} N_{\mathrm{r}} N_{\mathrm{r}} a^{3} I_{\mathrm{P}}}{T_{\text {rep }} h^{6}}$
where $T_{\text {rep }}$ is the repetion interval de fined in Fig. 1 and $T_{\text {rep }} \gg$ T.
As an example, consider the case wher T_{r} is $0.6 \mathrm{~m}, T_{\mathrm{r}}$ is $0.45 \mathrm{~m}, N_{\mathrm{t}}$ is 54 turns, N_{r} is
68 turns, a is $0.04 \mathrm{~m}, h$ is $1 \mathrm{~m}, I_{\mathrm{p}}$ is 1 A and ${ }^{-} T_{\text {rep }}$ is 0.016 s . Equation (10) gives a V_{m} o $1.1 \mu \mathrm{~V}$ and for $k=1, T=5.7 \mathrm{~ms}$. This is very approximate because h is not muc greater than r_{t}.
The time constant of a non metallic material in the vicinity of a metal demodifications to equation (6) as

$$
\begin{equation*}
T=\frac{1.64 \times 10^{-6} a^{2}}{S} S \tag{11}
\end{equation*}
$$

The voltage at the receiver coil is deter inned by the rate of change of flu is given by
$\frac{r_{t}^{2} N_{1} I_{p}}{2 h^{3}} 1.907 a\left(\frac{-k}{\left(0.16 a^{2}\right.}\right) e^{\frac{-t k}{7.16 a} 2} \frac{\mu_{0} a^{2}}{2 h^{3}} \pi r_{\mathrm{r}}^{2} N_{r}$
therefore,
$V_{\mathrm{r}}=0.262 \times 10^{-6} \mathrm{r}_{\mathrm{t}}^{2} r_{\mathrm{r}}^{2} N_{\mathrm{r}} N_{\mathrm{t}} I_{\mathrm{p}} \frac{a k}{h^{6}}{ }^{\frac{-t k}{7.16 a} 2}$
(9)

$$
i=1.907 a H_{0} e^{-\frac{-t \times k}{7.16^{2}}}
$$

In the pulse induction system of Fig he primary magnetic field at P is pproximately

$$
H_{0}=\frac{\pi r_{t}{ }^{2} N_{\mathrm{t}} I_{\mathrm{p}}{ }^{2}}{4 \pi h^{3}}=\frac{r_{\mathrm{t}}{ }^{2} N_{\mathrm{t}} I_{\mathrm{p}}}{2 h^{3}}
$$

where S, is the specific resistance of the material. Substituting $a=1 \mathrm{~m}$ and $S=0.2 \Omega \mathrm{~m}$, the approximate specific stant is $0.8 \mu \mathrm{~s}$.
Most rocks and soils have a specific resistance much higher than this so an effective separation can be made be tween signals due to metallic targets an

41

WIRELESS WORLD. MARCH 1980 introducing a delay Δt between switch off of the transmitter current and practice delays from $40 \mu \mathrm{~S}$ to $300 \mu \mathrm{~s}$ ar suitable
Magnetic viscosity effects
The magnetic properties of soils and The magnetic properties of soils and
rocks are mainly attributable to mag.
netite and maghaemite. These minerals exhibit a magnetic viscosity effect because their magnetization does not instantaneously follow an applied magnetic field. Magnetic viscosity is
qualitatively similar to the effects of a conductor on a metal detector. The direction of temporary magnetization is the same as the primary magnetic field and the magnetic flux in the conductor
being detected. Although there is no comprehensive theory of magnetic viscosity; Tropin ${ }^{3}$ has critically reviewed Neel's theory which is described by Stacey and Banerjee ${ }^{4}$. Useful
data for metal detector design has data for metal detector design has
provided by Colani and Aitken When designing a pulse inductiand metal detector it is necessary to know the response of soil or rock to a decreasing step in magnetic field. A
general equation is
$M \propto K \Delta H g(t)$
(12)

Fig. 7 Gated amplifier. Note that only one section of the 4053 is used, all unused nouts should 0 connected to ground. A impedance meter. All capacitors are ceramic or aluminium electrolytic types.

Fig. 6. Circuit block diagram. \boldsymbol{A}

where \bar{K} is the magnetic susceptability and M is the magnetic moment per unit volume of material resulting from a
change ΔH in the magnetic field t after this change. Equation (12) is linear in that $g(t)$, which describes the decay of the magnetization, is independent of the primary magnetic field. At
$t=0, g(t)$ should be finite and as $t \rightarrow \infty$ $t=0, g(t)$ should be finite and as $t \rightarrow \infty$
$g(t)$ should go to zero. Furthermore, $g(t)$ from practical experiences should be a decreasing function of t . Fig. 3 shows. the response of a soil or rock to a decreasing step in magnetic field. A review
of available literature and some experimental work shows that $g(t)$ can be expressed as a sum of two exponentials. An electronic system was constructed to simulate the sum of exponentials and
compare the result with the response of oil or rock. A satisfactory model for the erivative of $g(t)$ is
$\mathrm{g}^{1}(\mathrm{t})=(1-P) e^{-t / T_{1}}+P e^{-t / T_{2}} \quad$ (13)
where T_{1} is $75 \mu \mathrm{~S}, T_{2}$ is 550 to $800 \mu \mathrm{~S}$ and P is in the range 0.08 to 0.30 . These obsergoldfield region of Western Australia The function $g^{1}(t)$ does not depend on the physical dimensions of the material being magnetized and the form of the generally a simple exponential decay as in equation (7). I therefore decided to construct a ground effect elimination system for a pulse induction metal detector by determining the difference

Fig. 8 Synchronous detector. The
regulated power supply is shared with the
gated amplifier. The 47p compensation apacitor is soldered directly to the 3130 leads.

Fig. 9 Sum of exponentials eliminator Resistor R, controls the mixture of onstant T_{1} and R_{3} controls decay constant T_{2}. Production of the initiation pulse from logic level A is shown in Fig.

 10. the observed response, as
due to magnetic viscosity.

Coil design

Design objectives for the coil system are to maximise the primary magnetic field at the target and the voltage in-
duced in the receiver coil by eddy curents in the target. The noise level duro variations in the earth's magnetic field and movement of the gradiometer over the ground is about $1 \mu \mathrm{~V}$ with a coil of 25 turns, an area of $1 \mathrm{~m}^{2}$ and with a similar coaxial coil 1 m away. This
limitation was determined for system with a centre frequency of 200 Hz and a bandwith of 10 Hz . The major noise contribution is from normal variations in the earth's magnetic field and does not account for man-made electrical interference.
The time constant
damped gradiometer constructed with the above limitation is generally under $10 \mu \mathrm{~s}$ for a coil diameter above 1 m .
Transmitter coil design is Transmitter coil design is controlled
by the decay resistance required to prevent an excessive voltage being applied to the transistor switch, see Fig. 4. Neglecting coil capacitance, the decay of current I through a coil of self
inductance L_{t} and decay resistance R_{t} is

$$
I=I_{t 0} e^{-t / \pi t}
$$

(14)
where T_{t} is the decay constant R_{t} / L_{t} and $I_{\text {to }}$ is the initial current through the
transmit coil. If M_{t} is the mutual in ductance between transmit and receive coils and V_{p} is the peak voltage permitted at the switch, the voltage decay at the receive coil due to the current decay

$$
\begin{equation*}
V_{\mathrm{r}}=V_{\mathrm{p}} \frac{M_{\mathrm{u}_{\mathrm{t}_{e}}} L_{\mathrm{t}}-\mathrm{t} / \mathrm{T}_{\mathrm{t}}}{} \tag{15}
\end{equation*}
$$

If V_{e} is the maximum permitted voltage at the receive coil at time Δt
$\Delta t=T_{\mathrm{t}} \log _{\mathrm{e}}\left(\frac{V_{\mathrm{p}} M_{\mathrm{H}_{t}}}{V_{\mathrm{e}} L_{\mathrm{t}}}\right)$
(16)

With $V_{\mathrm{p}}=750 \mathrm{~V}, V_{\mathrm{r}}=1 \mu \mathrm{~V}$ and $M_{\mathrm{rt}} / L_{\mathrm{t}}=0.1$,
$\Delta t / T_{\mathrm{t}}=18.1$.
Equation (16) shows that the minimum value of Δt is determined principally by T_{t}. In practice T_{t} cannot be
much greater than 5% of Δt, depending on the ability of the circuit to reject a background decaying voltage during the receive period.
A circular metal detector array with
coaxial receive and then coaxial receive and transmit coils is
shown in Fig. 5. The receive coils are arranged in a gradiometer configuration and the bottom winding is coplanar with the larger transmit coils. In-
creasing the size of the transmit creasing the size of the transmit coils
reduces the magnetic viscosity effects due to a relatively intense primary field close to them.
In addition to this array, various circular types have been constructed with diameters from 0.05 to 2 m , and
rectangular versions up to 2 m long for searching large areas. For the larger arrays it is desirable to keep coil capacitance as low as possible by careful winding design. As previously noted, rigid system geometry is not
essential for a pulse induction system and the simple wooden structure described is sufficient.
Circuit design
A block diagram of the metal detector
circuit is shown in circuit is shown in Fig. 6. An alternating
primary magnetic field is used to avoid magnetic polarization of the ground and to improve the overall signal-tonoise ratio. The gated wideband amplifier in Fig. 7 consists of a high voltage protection network, a c.m.o.s.

Fig. 10 Interface, buffer and initiation pulse generator. A 4001 inverts the end
of the receive period pulse and derives of the receive period pulse and derives a
$60 \mu \mathrm{~s}$ initiation pulse from the receive period signal.

analogue switch and a transistor andigue switch and a transistor
amplifier designed for fast recovery from saturation. The 4053 grounds the amplifier input except during the receive period when the receive coils
are connected. The passband of the are connected. The passband of the
amplifier is 20 Hz to 100 kHz and the gain is approximately 4000 . It is not practical to use a higher gain due to instability and amplifier saturation caused by the decay of current in the transmit coils.
The synchronous detector in Fig. 8
recognises a pulsed alternating signal with a unity-gain sign switched amplifier. The op-amp provides an out-
put of +1 or -1 and the 4053 grounds put of +1 or -1 and the 4053 grounds
the input when a useful signal cannot be the input when a useful signal cannot be
received. The rise-time of the detector for a square wave is about $25 \mu \mathrm{~s}$.
A sum of exponentials eliminator is
shown in Fig. 9. This circuit takes shown in Fig. 9. This circuit takes
samples of 60 us duration at the beginsamples end of the receive period and simulates the magnetic viscosity effect of the ground by inserting a function as shown in equation (13). The simulated ground effect is subtracted from the
input signal to give an output when the response does not match that caused by the ground. The parameters T_{1}, T_{2} and P can be changed to suit the ground conditions. RC combinations are used for the simulation and a $0.32 \mu \mathrm{~F}$ capacitor
stores the background level to which the sum of exponentials decays. With the components shown the range for T_{1} is 20 to $240 \mu \mathrm{~s}$ (typically $80 \mu \mathrm{~s}$), for $T_{2} 50$ to $900 \mu \mathrm{~s}$ (typically $800 \mu \mathrm{~s}$) and P is from 0 to 1 .

References

1. Grant, F. S. and West, G. F., Interpretation Theory in Applied Geophysics, McGraw Hill 2. Colani, C., A New Type of Locating Device The Instrument, Prospezioni Archeologiche 1966, p15-23.
Tropin, YU. D., A Contribution to the Multidomain the Magnetic Viscosity of No. 6,1969 , ploo-194
No. 6, 1969, p100-194.
2. Stacey. F. D., Phy
Stacey, F. D., Physical Principles of Rock Magnetism, Elsevier, 1974.
Colani, C. ragnetic viscosity effects in A., Utilization of ragnetic viscosity effects in Archaeological
Prospection, Nature, vol 212 No. 5069 p1446-1447, Dec 241966 .

To be continued

February cover - correction
The thyristor stack pictured on our February
issue front cover was made by Powerstax Division of The House of Power, of Orping ton, Kent, not by Pinnacle Electronics Ltd as
stated in the caption. We apologise to both companies and to readers for any invon
venience that and venience that may have resulted from this
error.

Non-echoic acoustic measurement with the H-P 3582A

New Hewlett-Packard spectrum analyser uses digital signal processing
by R. N. Grubb, Auris of Boülder, Colorado

The HP3582A is a recently announced audio spectrum analyser. A number of its features can be exploited in the measurement of non-echoic conditions. These are described and some practical examples of its application given.
THE RECENTLY announced model 3582A spectrum analyser by Hewlettgeneration of instruments which depend on microprocessor technology to provide powerful capabilities at a lower
price than has previously been possible. In this case, digital signal processing technology is used to implement a flexible $0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$ spectrum analyser, using the fast Fourier transform (FFT)
of the digitized input signal to the signal spectrum in the to calculate the signal spectrum in the frequency
domain from a sample of the input signal in the time domain. Although the instrument is a computer system, the mechanics usually associated with the use of a computer are completely
transparent to the user, who is presented with a fairly conventionallooking front-panel control layout. The program is, of course, contained in The 3582A is no
The 3582A is not a real time third which may put off the average audio engineer is the lack of anything but
linear frequency-scale presentations. However, it is inherent in the fast Fourier transform approach that a linear, equally-spaced set of spectral estimates is produced. The resolution and the length and shape of the time window used to select the signal sample for analysis. Thus a logarithmic presentation of the data would necessarily be only cosmetic, information at the higher
frequencies being lost, if a constant proportional resolution were displayed. As the available frequency ranges of the instrument are very extensive, all the information is avalable, although it is obtain. By audio

$$
\mathrm{sp}
$$

standards, the capabilities are uncon ventional, including measurement of phase, measurement of transfer func-
tions and time-domain signal before analysis. Measurement
of audio systems, particularly response speakers, has recentlicularly of loudest in the quest for thecome of interreproduction of transients. The 3582A provides in one box the means to make response measurements, including phase, on loudspeakers and other audio trandsucers, without requiring an minicomputer used by loudspeaker manufacturers to make such measurements.

Fig. 1. Arrangement required for phase measurement.

Phase

Before proceeding to explain how to use he analyser for this hurpose, it may be useful to some readers to review what is meant by phase response and in parti-
cular how it can be measured by a spectrum analyser. The phase response of a device refers to a measurement of relative phase, usually the difference between the input and the output of the device. Unlike amplitude, or spectral single connexion to the system under test, two separate connexions are needed to measure phase response as in Fig 1. Thus, although a spectrum anayser is normally a single-input device,
with analysers like the 3582 A , one must hink in terms of two inputs to measure phase. Simply feeding in a composite ignal to one channel of the instrumen will give a perfectly good amplitude spectrum, but the phase answer com
puted will be different for each time sequence analysed because of the lack a reference. This may not matter in ome applications. For instance, if we want to know whether sideband amplitude or phase modulation, thei phase relationships to the carrier itself as seen in Fig 2 and a single sample

Fig. 2. Identifying amplitude or phas

\qquad
Phase spectrum of trequency modulation.
sidebands overage $+30^{\circ}{ }^{\circ}$ or -90° with
respect

Fig. 4. Comparison of two 1 in diameter capacitor microphone capsules in a stereo trace-amplitude. Upper trace-phase.

Fig. 5. The effect of a foam windshield on C451. Upper trace - without windshierd. Lower trace - with windshield.
analys
want.
will give us the answer we

Transfer function

The most straightforward mode of operation to give repeatable phase measurements is that of the transfer function measurement. The two chanacross the input and the connected device to be tested and one built-in noise sources connected to the input., The analyser now plots the ratio of the amplitudes and the difference in the phase of its two inputs versu This tran
his transfer function measurement
capability can be applied very neatly to the measurement of microphones. By connecting two microphones, one of which is to be regarded as the standard, placing them close together and in the sound field of a loudspeaker fed from the analyser noise source, their responses can be compared directly and very quickly. Figure 3 shows the result of comparing two nominally-identical
C451 microphones with CK1 capsules This disclosed the interesting information that although the microphones are well matched up to 15 kHz , the two differed by nearly 6 dB at 17.5 KHz . In this case, since neither microphone not possible to say which microphone or whether one or both was at fault. Exchanging the capsules on the microphone bodies showed the problem to be in the capsules and not in the chains.
The upper trace shows the phase difference. The constant phase slope at microphone was slightly in front of the reference microphone and it was possible by careful adjustment of the relative microphone position to make
the phase slope zero. It is interesting the phase slope zero. It is interesting
that the difference between the capsules shows up in the phase at a lower frequency than in the amplitude. One thing to note in this and in most of the other examples shown is that the
lowest-frequency point plotted by the analyser in the zero frequency start mode is in fact actually 0 Hz , i.e., d.c. and the position of this point depends on the analyser amplifier d.c. offsets or exter-
nally applied d.c. In this case, of course the microphone amplifiers are a.c.coupled, so the zero frequency point is quite meaningless.
Figure 4 shows another comparison of two microphones, in this case two lin capacitor capsules mounted one above the other in the same case and designed to be used as a coincident stereo pair This showed a good match at a frequencies, except in the region 3 9 kHz , where there are $2-3 \mathrm{~dB}$ dif ferences. Some experiment and the use
of another microphone as a comparison standard showed that the irregularities were only present in the lower of the wo capsules and were very sensitive to he angle of the microphone in the vertical plane/to the direction of the show that the problem was due to diffraction effects at the microphone case, he lower capsule being much closer to he case than the upper.
Yet another interesting comparison is shown in Fig. 5. This is the pair of C451
again, but this time the stored trace facility has been used to show the effect of the standard foam windshield on one of the microphones. The effect is easily
measurable and amounts to nearly 3dB
at 15 kHz (unfortunately, I forgot to illuminate the graticule for this photograph!)

Impulse testing
All the preceding three examples were meoustic treatment, but nevertheless far from anechoic. Thus, the sound field at the microphones being compared is composed of direct and reflected comto be based on the assumption that the microphone polar responses are similar. It is only possible by this method to compare a cardioid
microphone with another cardioid microphone with another cardioid or an
omnidirectional one with another omnidirectional microphone, etc. Providing the pair of microphones is not too far from the source compared with the dimensions of the room, and that the
room is reasonably non reverberant then small errors in polar response should have little effect on the comparison. However, we can do this kind of measurement in a non-anechoic room capability of the instrument using the the impulse response of loudspeaker and microphones and present the results in the more familiar terms of amplitude and phase and it is to this proba
Fourier transform theory tells us that a zero width pulse contains equal en ergy per unit bandwidth (power spec ral density - p.s.d.) at all frequencies, course this is a mathinite bandwith. O tion because, unless the impluse is in finitely large in amplitude its energy in ny particular bandwidth will be in finitely small. Fortunately for any given an impulse sufficiently narrow for the p.s.d. to be flat. The theory tells us that the power spectrum of a pulse of width t is

$$
P(f)=\left(\frac{A \sin \pi f t}{\pi f t}\right)
$$

This function, the familiar $\sin x / x$, is plotted in Fig. 6. By choosing t to be small enough, we can make the p.s.d. as flat as we wish over the working band late that a $1 \mu \mathrm{~s}$ wide pulse is only 0 . down at 25 kHz , the maximum band-

Fig. 6. The function $\sin \mathrm{x} / \mathrm{x}$.

WIRELESS WORLD, MARCH 1980
width of the analyser. A $10 \mu \mathrm{~s}$ pulse is
only $\approx 1 \mathrm{lB}$ down. At the rear of the ${ }_{3582 \mathrm{~A}} \approx \mathrm{ldB}$ down. At the rear of the This gives a positive-going pulse which is $\approx 1 \mu \mathrm{~s}$ long at the widest analysis bandwidth (25 kHz) and which increase in width as the analysis bandwidth is reduced. If this output is connected to the input of the analyser, the displayed of the problems of impulse analysis which has to be carefully considered in order to obtain valid results. Indeed, the analyser shows a flat spectrum but, as the sensitivity is increased to bring the the input channel overload light rapidly comes on. In fact, it is impossible to get more than a 20 dB measurement range above the noise floor. This, of course, is
because the test signal because the test signal has a very high
ratio of peak to mean value, and the analyser input dynamic range, which is set by its analogue to digital converter, only permits this limited range in the spectral domain. This situation can be external impulse source is used. As calculated above, a pulse of ten times the width $(10 \mu \mathrm{~s})$ is about IdB down at 25 kHz . This gives another 20 dB of analysis dynamic range, which is adequate
for nearly all acoustic testing; it is easy or nearly all acoustic testing; it is easy
to correct for the small loss at high frequencies of the test signal, if 1 dB is important.

Phase

Having developed the test signal, the next question to consider is what is meant by the phase of the test signa reference, in this case is set in the time domain by the position of the time window, in which the analyser sample the input signal. At a time t_{0} one can hink of all the reusly frequencie starting simultaneously at zero phas
(zero amplitude for a cosine wave) If the impulse is positioned at t_{0}, then its spectrum consists of all frequencies also starting at zero phase and the analyser impulse is displaced from t ances If the will be a progressive displacement in creasing with frequency, in the anaysed phase expressed by the formula for the group delay introduced by the
displacement

$$
\frac{\Delta \phi}{\Delta f}=\Delta t \times 360^{\circ}
$$

(ϕ in degrees, f in Hz .)
where $\Delta \phi / \Delta f$ is the phase slope with later than t) the phase of the (sign frequencies lags the lower and vice ersa. Note that a linear rate of chang of phase implies only a delay and no In the 3582A t is the time window when the 'flat top' or

Hanning passband shape is selected, or at the start of the time window when selected The passband shape is selected. The intended for transient analysis. In the former cases, the passband shape is set by amplitude weighting in the time domain so that a transient at the beginning or end of the time window would not be analysed correctly. To be able to analyser, it is necessary to place the impulse close to t_{0}, because a large phase slope due to a time difference will obscure the properties of the system discontinuous, because the discrete samples computed by the analyser are not close enough together to resolve the rapid phase change. To adjust the

Fig. 7. Sound paths for direct and
reflected sound in a small room.

Fig. 8. Typical loudspeaker time domain
response when driven by an impulse. timing, the analyser can be operated in

like an oscilloscope. In fact, the time domain sampled waveform can be selected for display on the c.r.t.t.; this ting up the analyser for transient ana ysis. In the free-run mode, the instrument repeatedly starts new time windows as soon as it is ready to ana outout occurs at the start of impuls window. Alternatively, the analyser can be triggered like an oscilloscope by an input signal on channel A or by a t.t.l evel pulse at a rear-panel input.

Echo gating

The advantage of using a transien signal to analyse the response of acous tic devices is that it is possible to sup press the effect of room reflection entirely without having to work in an tion, sound travels 1 foot per millisecond: the typical response of a oudspeaker to a $10 \mu \mathrm{~s}$ wide impulse is over in $2-3 \mathrm{~ms}$, depending on the quite small room with a loudspeaker to 4 feet from the floor and the measuring microphone 8 feet away, the first room reflection will arrive at the
microphone $3-4 \mathrm{~ms}$ later than the direct microphone $3-4 \mathrm{~ms}$ later than the direct
sound. Figure 7 shows the situation. A typical time domain response of a loudspeaker to a $10 \mu \mathrm{~s}$ wide impulse is hown in Fig 8 , which was taken from he analyser screen, with the instrument set on the $0-25 \mathrm{kHz}$ range. On thi and, by controlling the trigger time, the ransient picked up by the measurin microphone can be positioned near the centre of the time window with the first enables the amplitude response to be obtained, but as explained above, the transient should really be positioned near the start of the time window if the
phase response is desired. Since the time phase response is desired. Since the time
window gets longer as the analysis bandwidth is reduced (necessary if the

Fig. 9. Timing diagram for impulse meas

low frequency response is to be gate is needed so that the first direct path signal can be isolated. To do this,
and to be able to adjust all the delay correctly and generate the test impulse required some auxiliary equipment in addition to the analyser itself. This is
unfortunate because it seems that it would have been quite simple to build all the required functions into the analyser in the first instance.*
Figure 9 shows the
Fijure 9 shows the overall timing and
gating required. Because the analyser gating required. Because the analyser
time window must be started later than the impulse sent to the loudspeaker, it is best to generate the measurement repetition rate externally. This should be set to the highest rate which allow next pulse.
Two delayed trigger pulses are then needed - one to start the analyser time ate at the correct time with respect to the transient picked up by the meashe signal gate. A convenient way to get the first delay is to use a second microphone slightly closer to the louds-
peaker under test and feed its amplified
output to channel the trigger signal. The measurement microphone output is fed to channel B. The delay is adjusted by setting the elative distances of the two microphones to bring the received window on channel B. Channel A should also be examined to make sure that the trigger point on the transient is a stable one.
It is very important to make sure that all the significant energy from the tran-
sient radiated by the loudspeater included in the time gate. This can be checked both by inspection in the time domain and by changing the signal gate window over a small range and seeing if phase response. With high quality loudspeakers of small dimensions, it seemed the response died essentially to be possible to 3 ms, and it seemed to be possible to get a clean separation
between the direct arrival and the first reflected arrival in a room with a smallest dimension of 8 feet. With larger loudspeakers or units with pronounced resonances, this may not be possible

room.
The
The delay mechanism for the signal

Fig. 10. F.e.t. signal gate.

Fig. 11. Frequency and phase response of a Spendor BC1 loudspeaker measured
with an impulse, a) $0-25 \mathrm{kHz}$, b) 0.2 .5 kHz .
gate and the signal gate itself need to be electronic. Commercial pulse generators can be used to generate these and
the basic impulse and its repetition rate or, with the aid of a few digital i.cs, special generator and controller could be assembled. Some commercial signal gating devices may be satisfactory in this application - a simple shunt f.e.t.
switch such as is shown in Fig. 10 works well. It is most important that the switch does not introduce appreciable transients itself in the signal path. When the analyser bandwidth is longer and it may be necessary to readjust the system repetition rate. Also, as discussed previously, the impulse length must be increased proportionately to preserve approximately constant spectral power density.

Practice

Unfortunately, no measuring technique is completely free of disadvantages and
the gating-out of room reflections is no exception. The problem is that of determining whether the initial response of
the loudspeaker really has died away or he loudspeaker really has died away or not. It turns out that the use of a time tainty in the value of the spectral amplitude points for all frequencies roughly less than $1 / t$ in frequency. Why the effect is an uncertainty and not just a calculable loss can be seen by con-
sidering a couple of simple examples. If the device being analysed is perfect (i.e. a piece of wire) then locating the time window would clearly have no effect,

Fig. 12. Frequency and phase response of a Chartwell LS $3 / 5 \mathrm{~A}$ loudspeaker mea-
sured with an impulse. a) 0.25 kHz sured with an impulse. a) 0.25 kHz , b)
$0-2.5 \mathrm{kHz}$.
because the input impulse signal has a zero value at all times except for a small interval near zero time. However, if the device had a low-frequency cut off RC network, then its response to the impulse would have an overshoot folowing the impulse which returns to the baseline exponentially with a time constignificant error will be thade in the low-frequency response measurement unless the time window is maintained or 5 or 6 time constants, so that the response has reached zero for all pracresponse at a point where impulse remaining area under the response is negative will result in an apparent enhancement of 'low frequencies well below $1 / t$ and vice versa. Thus the effect the exact form of the impulse response.

Fig. 13. Apparent response of a BC1 with room reflection included.

WIRELESS WORLD MARCH 1980
Figures 11 and 12 show typical results bendor in the author's studio with The phase responses clearly show the effects of the crossover in the case of the Chartwell as a change in time delay (phase slope) starting at $\approx 3 \mathrm{kHz}$. With ittle more flexible arrangement, the average phase slope could have been ease in interpretation. In all cases, th measurement microphone was about on axis and 6 feet from the loudspeaker Figure 13 shows the effect of disablin the signal gate and allowing some of the that these loudspeaker measurement were relatively unaffected by the microphone used, providing it was a capacitor type and of professiona
quality, since these microphones in variably have a much flatter respons than monitor loudspeakers. If a standard measuring microphone is no available, then a $1 / 2 \mathrm{in}$ diameter omnidirectional capacitor microphone capsule would be the best second choice. The examples shown were made CKI cais same microphone but with a CKI capsule, which probably does affect the results somewhat. In all cases the
low frequency response below about $2-300 \mathrm{~Hz}$ appears to be attenuated
compared with the published response of these particular speakers, so it mus be assumed that some truncation of the impulse response was taking place.
Care should be taken not to overdrive the loudspeaker with the impulse: A few watts peak power should be all that is required. The sound should be that of a quite quiet tick similar in volume to that of a typical alarm clock. If the meas-
urement conditions are quiet then the response can be obtained with only one impulse. However, if you don't live in the country or have a well isolated Studio handy, there is no need to
despair; use the last unique feature of the analyser, time domain averaging. This adds together, algebraically, each successive sample at the same time with respect to the trigger. The wanted
signal is preserved but background noise cancels itself on the average. Thus, not only do you not need an anechoic room to make loudspeaker measurements, you do not even need a 12 used a signal average of 16 s. 11 and All the comparison tests of microphones described earlier can be better done using a loudspeaker excited by an impulse with the appropriate delays and gating. In this case, since the measurement, the rear-panel t.t.-
level trigger input must be used Absolute measurement of microphone response requires an acoustic impulse generator of known characteristics. It high-voltage spark discharge or an ploding wire forms a useful source for this purpose, providing the construction of the electrodes is such that the sound rauthor has not yet tried thiswever, the

* It is possible to do the signal gates
within the instrument using the IEEE within the instrument using the IEEE
488 bus programing input. However, 488 bus programing input. However,
this means significant additional complication and expense.

References

Hewlett Packard Application Note Understanding the HP3582A Spectrum ${ }^{2}$ Analyzer.
J. M. Berman and L. R. Fincham. The Application of Digital Techniques to the of the Audio Engineering Society. June 1977, Vol 25, No. 6, pp. 370, 384 .

EEV provides bright lights
for ATV games
large scale, computer-controlled electro alve Co. can be seen by English Electric f the Bob Monkhouse "Family Fortunes The main body of the display. 30 "character display tubes" (a form of crs osting about £100 each), which EEV say ower consumption and electronic with low level logic. The control logic, in cluding a keyboard and v.d.u. control con
sole, includes an Intel single board compute and the complete installation is said to hav cost ATV about $£ 80,000$.

Cross-sectional view of the EEV character
disolay tube. The flying lead grid connection
display tube. The flying lead grid connectetions
are for multiplexing; the "expected life" of the

Abridged specification	Measurement modes
	1. Frequency spectrum, amplitude and phase
	amplitudes and difference in phase.
$2 \mathrm{n} 1 \mathrm{M} \Omega+60 \mathrm{pF}$ impedance, sen sitivity +30 dBV to -50 dBV in 10 dB steps. Overload indicator light.	3. Coherence function, the degree of coherence ($0-1$) between the input channels.
Frequency spans 1 Hz to 2.5 KHz full scale in zero-start mode, 1-2.5-5-10 sequence. Bandpass mode $5 \mathrm{~Hz}-25 \mathrm{kHz}$ span in 1-2.5-5-10 sequence.	Signal sources 1. Random noise. This is generated digitally and adjusts automatically with the frequency range selected to maintain a constant power output in the analysis band.
Frequency resolution 256 spectral points are calculated in the single-channel mode, 128 in the dual-channel mode. The resolution depends on the passband selected. There are available, a "Flat top" optimised for harmonic analysis of tone signals, a Hanning" passband optimised for general random noise measurement and a Uniform" passband intended for transient analysis and use with the built-in periodic noise source.	2. Periodic noise. This is also generated digitally and is arranged to have a "comb' spectrum which exactly matches the calculated spectral points. This gives the same effect as a tracking generator in a conventional swept analyser with the advantage over random noise that no frequency domain averaging is needed to get an accurate answer. 3. Impulse. This varies in width depending on the frequency range selectedm It ' is timed to occur at the start of each analysis time window.
Display	
The digitally driven c.r.t. has infinite	Averaging modes 1. Frequency Domain
two traces of data from either the current measurement or from up to two traces stored from previous measurements. It provides an alphanumeric readout of trace calibration, a cursor readout of trace values in engineering units and	a) r.m.s. average of calculated spectra! points with $4-256$ points averaged or an exponential "running average"' mode. b) Peak, 4-256 points or peak hold in a continuous mode. 2. Time domain.
error messages. Amplitude display 10 dB or 2 dB per division 88 divisions vertically) or linear. Phase $\pm 200^{\circ}$ Frequency displayed linearly.	$4-256$ input signal time sequences averaged. The zero time is set by a trigger circuit on input channel A or by an external trigger input at t.t.I. level.

Clock timer - 2

Memory circuit, construction and testing
By R. D. Clemow and T. C. Carden.

Numerical data from the keyboard is encoded to b.c.d. and fed to the memory data inputs. Four of the memory address pins are used to counter. Two of the pins address the four digits of the alarm time and are connected directly to the A and B multiplex control lines from the clock. In the Set mode the alarm key clocks the counter and accesses the memory locaIn the Run mode, control line C clocks the counter so that the alarm times are scanned at one every 6 ms . The read write control circuit ensures that only
the correct memory locations are used. The memory input circuits are shown

be retriggered by contact bounce, see Fig. 9. The write pulse clocks IC 6a $_{6}$ in Fig. 8 and the \bar{Q} output goes high which clocks IC $_{6 \mathrm{~b}}$ whose Q output goes low, the multiplex control lines A and B by exclusive NOR gates $\mathrm{IC}_{15 \mathrm{a}}$ and IC_{155}, and the output is high only when the control lines are both low. The write pulse from IC_{23} is delayed by R_{27} and C_{11}, to allow
${ }^{\text {IC }}$ to be clocked, and is gated to the memory r / w pin if data valid is high and all three multiplex lines are low. Data present at the memory inputs is the written into the tens-of-hours location for the first alarm time. Pressing a
second key clocks IC
b Q output goes high. Therefore, writing the data is written into the hours loca tion of the memory. This procedure is repeated for the tens-of-minutes data. If
a mistake is made, pressing four keys overwrites the incorrect data. When the first alarm time has been set the alarm key is pressed which triggers the second monostable in IC_{22} and pro$\frac{\text { duces a low advance-alarm pulse at the }}{\mathrm{Q} \text { output. This pulse is gated through }}$ $\mathrm{IC}_{17 \mathrm{~b}}$ to the set inputs of IC_{6} so that the Q outputs are high. The advance-alarm pulse also clocks IC_{7} via $\mathrm{S}_{2 \mathrm{~b}}$ and $\mathrm{S}_{3 \mathrm{~b}}$ so that the memory locations correspon-
ding to the second alarm time are dressed, see Table 2. If a numerical key is released in less than 15 ms the datavalid line goes low to force the memory r / w pin high and prevent the writing of false data.

Memory output circuit
A display selector switches the actual time or the alarm time and is controlled by the Run-Set and Alarm-Day switches. A comparator compares the actual time with the output from the recognises an agreement if the alarm is enabled. The output circuit then drives a relay or other suitable device. Because

Table 2 Memory truth table
the output drive capability of the memory is only one t.t.l. load, each output is buffered and inverted to proFig. non-inverted b.c.d. as shown in memory or the b.c.d ected from the the clock by IC When Y is low in the Set-Alarm mode the alarm times are displayed as they are set. As only the hours and minutes are set, seconds are blanked by $\mathrm{IC}_{2 \text { d. }}$. When Y is high in the Run mode the output of $\mathrm{IC}_{21 \mathrm{~d}}$ is low and
the time is displayed normally. The memory output data is compared with the multiplexed time from the clock by

Fig. 9. Single write pulse

$$
\begin{aligned}
& \text { Fig. 10. Memory output circuit and } \\
& \text { comparator. }
\end{aligned}
$$

comparator.
$\underbrace{\text { (Break connea }}$

52
IC_{3}. Normally, IC_{7} is clocked by contro line $\mathrm{C}_{\text {via }} \mathrm{S}_{2 \mathrm{~b}}$ so that the alarm times are one every 6 ms . This sequence repeats output in Fig. 10 is high when all four bits of a digit in the time agree with the memory data. The two inputs to $\mathrm{IC}_{14 \mathrm{c}}$ are high only when the alaw, and during by IC_{18} output going low, and during
the first four seconds of a minute, i.e the first four seconds of C, and seconds Cand D are all low. The output of IC ${ }_{13 c}$ is high only when the above conditions
are met, control line C is low, i.e. tens are met, control line C is low, i.e. tens processed, and the clock is not being updated at 100 kHz i.e. the set-timepulse line is low. Therefore, if a true comparison between the stored alarm
time and the displayed time exists, a 4 ms high pulse appears at the output of $\mathrm{IC}_{13 \mathrm{c}}$. The 4 ms pulse is repeated at 96 ms intervals until four seconds past the start of the minute. However, during
this time shorter pulses may appear at IC_{13} output such as a 3 ms pulse produced by agreement of three consecutive digits in one alarm time. Pulses which are not 4 ms long are rejected by the comparison detector in Fig. 11. The every 6 ms when control line C goes high. Capacitor C_{16} therefore discharges through D_{20} to around 0.7 V in the 2 ms period, and then charges via R_{43} when the comparator output goes high. Res-
istor R_{43} is adjusted so that C_{16} charges sufficiently to switch Tr_{9} on if the comparator output remains high for 3.5 ms When the collector of Tr_{9} goes low, the 555 monostable triggers and produces by R_{46}. This method of detecting the 4 ms pulse provides high noise immunity and is easy to adjust although an error of up to 96 ms can be produced in any serial alarm-time output. A simple relat put is shown in Fig. 12. Diode D_{22} protects Tr_{10} and R_{49} limits the voltage across the relay. Resistor R_{46} can be

Construction alignment

 and testingConstruction of the timer depends lar gely on how the clock has been built. In the prototype a Rugby clock was timer was built on a third board. The keyboard and day indicator were mounted on the board inside a case to prevent unauthorised setting. The remaining components were positioned memory must be handled carefully to avoid damage by static charges and the 5 V supply to the i.cs should be decoupled at regular intervals capacitors.
on individ testing is best carried out on individual sections. After con-
structing the power supplies check that no switching spikes are present on the

battery charger and control circuit when the mains is switched on and off. about 45 mA and then disconnect the battery. Next, construct the keyboard insert all of the i.cs except for the memory. Check that pins 4 and 12 of C_{22} give single 150 ms pulses when the respective keys are pressed and only pin 5 of IC_{23} gives a 15 ms pulse when any numerical key is pressed.
Assemble the day-of-the-weekindicator and check that the day advances each time the day key is pressed.
To test the midnight-pulse circuit, set the clock to 23.59 by injecting pulses into the divider chain with the clock aerial disconnected, and check that the day indicator advances by one when the
display changes to 00.00 .00 . Construct the alarm-enable/inhibit section and set he switches to Set Day. Test that the sing key 1 , and off by pressing key 0 Check that the data is recycled cor rectly by pressing the Day key seven rectly
times.
Cons
Construct the read/write contro clock for display blanking and switch on-reset as shown in Fig. 8 and Fig. respectively. Insert the memory, check that the time is displayed with S_{2} at Run and that only hours and minutes ar Thay digits will be random due to th unprogrammed memory. Pressing numerical key should write into the
continued on page 6

The transmitter is a Gunn device mounted in a rer is a duces a cer a wide beam and when positioned in a room portions of the signal are reflected back into the receiver. The receiver front-end consists of a single Schottky-barrier mixer diode, operating as a superhet by mixing a directly-
coupled portion of the transmitter power with the reflected signal. A difference or beat frequency is then extracted from the mixer output terminals.
When
When no movement is present, the same frequency as that transmitted and so there is no output frequency (only a rectified d.c. level) from the mixer. As from an intruder a Doppler frequency hift is imposed upon the reflected signal and appears at the mixer output. The appearance of such a signal can
hen be used to operate a remote alarm ystem.
Such is the basic simplicity of the false alarms, transient movements interference and special triggerin requirements, then careful circuit de sign is necessary. It is in the amplifying that the up-dates and improvements to this intruder alarm have taken place. In this country, the emission chara eristics of the radar module are pecified by the Home Office and fo frequency is 10.687 GHz From the equation, the linear relationship bet ween Doppler frequency and radia velocity is 71.25 Hz for each metre per econd (or 31.85 Hz per mile $/ \mathrm{h}$). In the complete circuit of the alarm he same as the previous supply to the radar module and provides an adjust

ble, highly stable output voltage with low ripple. This aspect is important as it
minimizes the a.m. and f.m. content of the transmission. The main differences from the original version are

-fewer components

- conversion to a single-sided supply rail, making battery operation -active filtering
-modification to the diode pump circuit to give increased immunity to interference and transient responses
set after switch-off and alarm r
-

At the heart of the electronics is the RC4136 quad op-amp. Each individual has a lower input noise figure. The first stage is used as a filter with a fixed gain fain second stage Following thariablestage is the diode pump, with the addition of a transistor to act as a fast
discharge path and so prevent th ircuit charging up on short-lived in interference, insects or twitching cur tains. This, together with the mains and .f. input filter gives an excellent mmunity to false alarms and ensure eliable triggeri
movement. A featur
is retained, but implemented differently s a built-in delay of about 45 seconds om the time of initial switch-on to when the alarm will start to respond switching on the alarm. The delay is provided by the charging time constan of R_{1} and C_{1} to switch the output level of $\mathrm{IC}_{2 c}$, and hence the correct non-
inverting input of $\mathrm{IC}_{2 d}$. Conversely, a new feature is now provided by the R, C_{2} feedback combination which will automatically switch off the subsequent transistors after they have been on for about half a minute. This is a relatively
long time for a loud alarm to sound and is considered sufficient to scare off an intruder. It also removes the embar

Printed circuit board for this improved version of the 1977 intruder alarm is,
available from Intignex Ltd, Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE 11 9PT, for £3. 75 plus v.a.t.
rassment of returning home after weekend away only to face one' neighbours, sleepless after an in action, the alarm is, of course, returned to the "on-guard" state. Finally, the alarm circuit suggests a relay, with the sounder conected in parallel with the be provided for activating additional external circuitry
Switch will $\mathrm{S}_{1 \text { a }}$ is a push-button type and is also connected to a jack socket for connection to a remote switch. Thus, one has the choice of deliberately triggering the alarm on entering the thereby providing a check that it was functioning satisfactorily, or else re-

WIRELESS WORLD. MARCH 1980
setting from some other, concealed, position.
A printed circuit board has been designed for the new alarm and all the components are intended for board mounting. The original idea has been
maintained, enclosing this board with a chassis and fitting it with a cover to disguise the complete assembly as a book. The alarm thus becomes smart in appearala and

Constructional points
The mixer diode in the radar module is easily damaged by static and similar precautions to the handling c.m.o.s. shorting link is attached which should only be removed after assembly is finished.
Wiring associated with the input circuitry should be kept as short as
possible to avoid noise pick-up possible to avoid noise pick-up.
The Gunn tranismitter will
manently damaged by a reverse polarity. Set the +7 V supply to within $\pm 0.1 \mathrm{~V}$, using R_{3} with a dummy load Gunn device and the place of the dummy load and connect to the transmitter.
When the complete alarm is reassembled, the final operation is to set observing the l.e.d. flash in response to movement in front of the alarm. It continues to flash whilst the gain is increased with R_{4}, until a point is reached
when self-oscillation begins and the when self-oscillation begins and the the gain from this point until the led ust remains off when no movement is present and the alarm will be at maximum sensitivity.
In common wit
In common with all devices that emit r.f. signals, approval to operate is re-
quired from the Home Office. In this instance, the complete alarm system has been granted Home Office type approval and provided the circuit n application (see page 82). grante on application (see page 82).
nance specificatio
Transmitter frequency
ransmitter output $10.687 \mathrm{GHz} \pm 12 \mathrm{MHz}$ Antenna gain gain ${ }^{5 d}$ B above isotropic Operating temperature range
Range $\ldots \ldots \ldots,-5$ to $+40^{\circ} \mathrm{C}$
approx 10 m against a man-sized object
Switch-on delay
Automatic re-set after..... approx 45 s
Switch-on delay $\ldots \ldots . . \begin{aligned} & \text { approx } 45 \mathrm{~s} \\ & \text { Automatic re-set after }\end{aligned} \ldots$ approx 30 s

Literature Received

Range of professional electron tubes cathode ray tubes, vacuum capacitors and
special products such as reed capsules and abridged data book for 1980/81. An equivalents index is included. Available free of charge in response to requests on compan
design processes used in the CELLMOS integrated circuits by GEC is available free integrated circuits by GEC is available free
from GEC Semiconductors Ltd, East Lane,
WW

Catalogue of edge connectors is produced by Catalogue of edge connectors is produced by
Molex Electronics Ltd, Holder Road, Alder-
shot, Hants. shot, Hants.
A leaflet giving details of a range of toroid power transformers rated up to 130 VA , in vel-Lindberg Ltd South be obtained fro RM55TD.
A
formation dules forming STATUS - a many types of computer - is described in leaflet by BNF Metals Technology Centre
Grove Labs, Dechworth Road, Wantage Grove Labs, Dechwor
Oxfordshire OX12 9BJ.

BS4739, entitled "Expression of the proper es cachode-ray osciloscopes, is identica with general-purpose types, Part 2 bein concerned with storage instruments. Part at $£ 12.50$ and Part 2 at $£ 4.50$ can be obtaine London N1 9ND.
A booklet on the Telpro range of hand tool and production equipment for electronics
can be had from Tele-production Tools Ltd, Stiron House, Electric Avenue, Westcliff-on-
Sea, Essex SSO 9 NW .

Three IEC publications have recently bee received; IEC147 details a measuring metho ures for high-purity Ge detectors and IEC647 is concerned with dimensions for magne oxide cores. They are obtainable from the International Electrotechnical Commission
1211 Geneva 20 Switzerland at $\mathrm{Sfr} 70(147)$ 1211 Geneva 20, Switzerland
S.fr. 32(430) and S.fr. 16 (647).
The first issue of a monthly newsletter from Rapid Recall, intended to be of interest to
anyone concerned with micro-processors o memories, can be had from 6 Soho Mors olls,
Woodburn Industrial Park, wooburn Green Woodburn Industrial Park, Wooburn Green
Bucks. 406

A method of using a computer to write pry Compelec, who call it Instant Software. A leaflet describing the facility and how customers can make use of it is obtainable from Compelec Electronics Ltd, Fourth Floor,
14-15 Berners Street, London W1P 3DE.

A film entitled "The challenge of choice,"
written by David Weir and directed by James written by David Weir and directed by James
Hill for STC, examines the effect of developments in telecommunications on people's
lives. A brochure containing the
available from STC at STC House, 190
Strand, London WC2R 1DU. WW 408
A bulletin on the various sound system which can be assembled from equipmen made by Millbank, describing several speci-

men installations, is obtainable from Mill| bank Electronics Group Ltd, Uckfield, Sussex |
| :--- |
| TN2 |
| WW 40 |

Connectors of various types, including thos for printed boards, modular connectors and
other multi-way and single-pole kinds, are otlustrated and briefly described in a leafle from Hypertac Connectors, Chronos Works,
North Circular Road, London NW2 7JT.
WW 410

A vapour deposition system for productio work on semiconductor materials is th Research Ltd, Melbourn, Royston, Herts SG
utiplexed monitoring and control system made by Vindicator is described in a leafle Indon (Heathrow) Airport, Hounslow, London (Heathrow) Airport, Hounslow
Middx.
Performance optimization, fault-finding and evaluation of minicomputer using logic ana tom Hewlett Packard Ltd, King Street Lane Winnersh, Wokingham, Berks. WW 413 .

Analogue and digital test-meters made by Sanwa are described in a catalogue from Quality Electronics Ltd, 24 High Street, Lydd
Kent TN29 9AJ. 414
An introduction to laser velocimetry an are offered in a publication from Biral. Bristo Industrial Research Associates Ltd, PO Box

Weighing cells type $Z 7$, which are shear beam transducers for tensile and compre hensive loading, are the subject of a leaflet Way, Ruislip, Middx HA4 OJT. WW 416
The 1980 catalogue from Livingston Hire is now available from Shirley House, 27 Cam-
den Road, London NW 9 NR. 417

'Radio navigation and radar'

 The article on 'Radio Navigation and radar' pointed out to us by LCDR R. E. Burke, Jr. The description of the Loran-C hyperbolic system on p 4s was in reality that for Loran-A. Loran-C is also A. L aran- CHz is aso a pulsed system, working are measured on the carrier itself, giving on a return trip. Ground wave, LCDR Burke tells us, extends up to 1000 miles, with a position accuracy of 0.25 nautical mile. We

Alternative astable circuits

by Peter Williams Ph.D. Paisley College of Technology

This circuit has been referred to above and can be approached in more than one way: as a Conventional astable in which one of the capacitive couplings is replaced by a direct connection,
as one of the two-amplifier single capacitor astables similar to a c.m.o.s. astable, or as equivaient to a single positive-gain amplifier with CR feedback. In this last interpretation the two invering stages pertorm the same function as the two non-inverting stages of the ionglectanc circuits. To say that a given circuit "is" a particular type refers only to the way in which the designer or user has decided to partition it. Each redrawing or repartitioning may reveal a new
patterin, a new way of classifying it, or even a new class of which it is the first member. This particular astable has still greater significance when related to the classic two-transisto monostable

Alternative astable circuits

These have generally been designed for special rather than general purpose use. Both ransistors go off and on simultaneously. In circuits such as the one shown a long space is
btained by making $R_{s}>R_{\text {. Hen }}$ Hence the current is only on tor
 unijunction model have been used as pacemakers for heart stimulus. In these applications a
space to mark ratio of up to $10,000: 1$ is needed to prolong battery life. Such circuits have an spditional advantage in that the mean dissipation is also reduced ofr a given peak output
current. The basic principle of the circuit shown is seen by assuming both devices are current. The basic principle of the circuit shown is seen by assuming both devices are
conducting though not saturated and then switch off. Point A rises sharply because of the positive step at Tr_{r}, collector while B corresponding falls. The capacitors then recover with $R_{c}+R_{B}$ determining the rate of recovery and A and B approach and then pass each other. When $\mathrm{H}_{\mathrm{c}}+\mathrm{R}_{\mathrm{B}}$ therce is about $1 V$ the transistors just begin to conduct and regenerative switching
forcest A down and B up. The base currents are dependent on the current gains and the pulse forces A down and B up. The base curren
duration is relatively short but ill-defined.

The two-transistor astable is often advocated because it can provide anti-phase and square-wave outputs. That faciity is easily attainable with logic gates and flip-flops from almost
any astable or pulse generator and more attention is due to such alternators. The long-tailed pair is the basis of a current-switching astable which operates at much higher speeds because neither transistor need be saturated. In this it is closely linked to the e.c.l. gate with which it can be implemented. The emitter resistor is sometimes replaced by a true constant-current circuit output pulse size, but generally improves the speed of response. Assume Tr_{2} goes into conduction. The fall in collector voltage drives the base of T_{r} negative and T_{1} cuts-off
transferring all of R_{E} 's current to T_{2}. As the base of T_{1}, recovers toward zero the amplifier enters transferring all of R_{E} 's current to T_{2}. As the base of Tr_{r} recovers toward zero the amplifier enters
its linear region. T_{1} begins to conduct and current is diverted from T_{2}. It collector voltage rises and regenerative switching carries it up to +V . All the current in R_{E} now flows in T_{r} until the
base of Tr_{r} again returns to its linear region and the cycle recommenced. The long-tailed pair is base of Tr_{r} again returns to its linear region and the cycle recommenced. The long-tailed pair is
a non-inverting amplifier of finite gain and the circuit is equivalent to a known form of op-amp a non-inve
astable.

THEORY

- From symmetry then, when the transistors are conducting, the timing is imprecise depending inter alia on h_{Ft}. It is only one of a number of such complementary astables and no analysis is offered
though the period is primarily defined by $\mathrm{R}_{\mathrm{g}} \mathrm{C}$.
- In this circuit the output voltage step is of magnitude $V_{s} R_{c} / R_{E}$ for a supply of $\pm V_{s}$ as the current in R_{E} is switched between T_{S}, and T_{2}. If he circuit were to have a linear voltage gain A_{A} then the switching V_{2} are

$$
\begin{gathered}
v_{1}=v_{s}\left(1-\frac{R_{c}}{R_{E} A_{v}}\right) \\
v_{2}=\frac{v_{s} R_{C}}{A_{v} R_{E}} \\
t_{2}-t_{1}=\tau \log _{e}\left[\frac{1-\frac{R_{c}}{A_{v} R_{E}}}{\frac{R_{c}}{A_{v} R_{E}}}\right] \\
\tau \operatorname{\tau log}\left[\frac{A_{v} R_{E}}{R_{c}}-1\right]
\end{gathered}
$$

For R_{E}, R_{c} comparable $A_{v} \gg$

$$
T \approx 2 \pi \log _{0}\left[\frac{A_{V} R_{E}}{R}\right]
$$

A similar conclusion can be drawn about the emitter-coupled astable if it is considered as
cascaded common-base and common-collector stages. The long-tailed pair comprises cascaded ommon-collector and common-base stages. The non-inverting combination having both $A_{v}>1$ nd $A_{1}>1$ consists of a pair of cascaded common-emitter stages and this example is treated
later. The analysis of this astable is easiest if $R_{E 1}$ and $R_{E 2}$ are replaced by constant-current sources 1 , and I_{2}. The capacitor must change its p.d. by equal and opposite amounts during succeeding portions of the cycle as the p.d. must always return to its original value at the start of
each cycle in any stable oscillator. When the emitter of Tr_{2} goes high, T_{1} is cut off and the current in \bar{C} is 1 , When $T r_{1}$, conducts it pulls the base of $T r_{2}$ below its emititer cutting it off and
 $<R_{E}, R_{E z}$ the voltage steps on the resistors:are small compared to the mean values and the
waveforms and frequency differ little from the constant-current case. The circuit is again non-saturating and is capable of high speed.

Current-operated circuits extend the range of possibilities as compared to the restriction of voltage operation. A halfway house is provided where active devices are operated in series from a voltage supply. These are again a specialized sub-group of astables, but can be simple and
effective. The version shown is a serial form of the emitter-coupled astable though implemented with junction f.e.t.s as this eliminates a number of bias components.

Impedance mismatching

A pitfall to be avoided when using Thevenin and Norton equivalent sources

by F. J. Lidgey, Ph.D., B. Sc. Oxford Polytechnic

What's cooking?

The reluctance (for whatever reasons) of the Home Office to introduce a low-
power citizens' band radio facility in the UK is in marked contrast with the open-ended permission given to the public to install crude, high-power transmitters in their homes in the form of microwave ovens. Radio-
astronomers at Jodrell Bank have investigated (Nature, Vol 282, 6 December 1979) the amount of broadband spurious "out-of-band" emission from typical ovens and have confirmed that this is sufficient to cause interference to on the sidelobes of large radiotelescopes at distances up to 20 km or more on some frequencies.
Ovens generally use the "rectified a.c." form of pulsed, self-excited microwave generators on the i.s.m. (indust-
rial, scientific, medical) frequency of 2.45 GHz with a power output of the order of $1-2 \mathrm{~kW}$.
The primary source of leakage of unpolarized radiation is, the report states, from the seals around the oven
door: "The seals are non-contacting and seem to consist of a resonant, quarterwavelength choke nominally tuned to 2450 MHz , followed by microwave absorbing material." It is emphasised that
while this form of sealing is sufficienty effective at 2.45 GHz to satisfy the UK safety regulations (i.e. exposure to microwave radiation, It fails to give adequate out-of-band suppression to
prevent possible interference with other prevent possible interference with other
radio services authorized to operate: radio services authorized to operate-
within the $1-6 \mathrm{GHz}$ spectrum. Elsewhere it has been suggested that harmonic: emission from ovens could prove to be: the major source of interference to direct-broadcast satellites. The use of large numb
wave ovens in residential areas could also prove a major problem for radio amateurs interested in the development of microwave
signal levels.
The Jodrell Bank team complain that for the past ten years they have been urging the Home Office to specify per-
mitted levels of out-of-band spurious mitted levels of out-of-band spurious
radiation from ovens.

A boom in the hobby

Amateur radio in the UK experienced a
sharp boorn during 1979 and a record 26,981 licences were current in December. The number of new licences issued by the Home Office during the year amounted to 3155 , of which 1054 were Class A (all modes, all bands) and
2101 Class B (v.h.f.u.h Some 2400 people passed the first
"multichoice" Radio Amateurs' Examination held in May 1979 and considerable
examination.
The RSGB reports a 10.5 per cent increase in membership with some 414 It remains be se It remains to be seen whether these
exceptional increases in the hobby were part of a long term trend or were partly the result of the unusual amount of media coverage during 1979 which in cluded the "Open Door" and "Nation tronics manufacturing industry how ever, has benefited only marginally from this boom, with the overwhelming majority of factory-built equipment oming from overseas. While ther mpear to be no figures on the total he US market as worth $\$ 23$-million in 1979 , rising to an estimated $\$ 26$-million in 1980 .

Topics in the air

new New Year brought forth a flurry of "new prefix" activity. East Germa Y2" instead of the long familiar "DM in what seems likely to be a permanen hange. A selected 200 Russian amat urs in Moscow, Leningrad, Tallinn prefixes to mark the country's hosting of the Olympic Games, using RX, RZ, RK and RU prefixes for what are termed special Olympic ham operations." Club stations in Moscow and Tallinn will and those in Leningrad, Kiev and Minsk on July 15th. These special prefixes end on August 3rd.
The first complete break in 50 MHz ong-distance propagation in more tha 1979 when the expected decline in solar hux took effect. A feature of the period of high solar activity was its remarkable freedom from geomagnetic disturbmaxima. An aspect of v.h.f. propagation in the USA that does not appear to occur in the UK is a regular winter poradic E season af A 432 MHz .
repeater is in operation in the Welling ton area of New Zealand, providing opportunities for tv transmission ove distances of 60 to 100 miles, with several more in the planning/construction
stage. An estimated 50 such repeaters are now operational in various parts of the world. A special "intruder watch" callsign - ZL61W - has been issued by the New Zealand Post Office but wi
A new reciprocal operation agre
ment between Canada and the USA ment between Canada and the USA exceptionally liberal terms: It allows amateurs of either country while visiting the other to operate without needing to obtain prior written permis-
sion. However, since US-type novice sion. However, since US-type novice
and technician licences are not issued in Canada, US amateurs with such licences are still not permitted to operate in Canada.

The Vojvodina Amateur Radio Federation of Yugoslavia has more than
10,000 members and its basic aims are: "to maintain radio links, teach and train young people in electronics and telecommunications and train all members for all-people's defence and
social self-protection". The nationa amateur society in Yugoslavia is SRJ (Savez Radioamatera Jugoslavija). Special event callsigns in the UK in the series GB4 plus two or three letters
are being issued through the RSGB the are being issued through the RSGB; the
GB3 plus two letter calls will in future be used for repeater stations, and GB3 plus three letters for beacons. Special event callsigns in the series GB2 and GB8 continue to be issued
A number of FCC employees who have been "inconsistent" with official procedures are to be allotted new calls. This follows an investigation into fraudulent upgrading and licensing of sta tions, in recent years.
has been presented by the Royal Naval Amateur Radio Society to 87 -year-old Mrs F. V. McKenzie, OBE, former operator, first qualified woman electrical engineer and founder of the Women's Emergency Signalling Corps (later Women's Royal Australian Naval Service) which trained about 11,000 Australian, American and Indian ra
operators during World War 2 .

In brief

A new RSGB award for microwave operation will require confirmation of contacts with five "large QTH locator squares" on any of the bands between
1.3 and 24 GHz . FCC is expected soon to permit American rtty thusiasts to use ASCII. . . . A regular moonbounce newsletter is being organized by the Oxford University EME Group (G3WDG, 10 The Crescent, Pattishall, Towcester, Northampton-
shire) . . Rev G. C. Dobbs, G3RJV, Hon. Secretary of the "G-QRP-Club" has changed address to 17 Aspen Drive, Chelmsley Wood, Birmingham B37 A linear translator (repeater) on the
1296 MHz band is operating in San Jose, California.

PAT HAWKER, G3VA

All this seems quite reasonable and as
Power transfer from a source into a
load is frequently discussed in circuit load is frequently discussed in circuit heorr. Also a parameter of interest
the transfer efficiency (η) defined as he transfer afficiency (η) defined as he ratio of load power P_{L} to total proposal of this article is to outline a common error made in calculating η which stems from an incorrect ssumption regarding the power delivered by a Thev

With transfer efficiency in mind it is easy to show that a 'mismatching' of power dissipation in the source impedance. For example, in Fig. 1:
$P_{\mathrm{L}}=i_{\mathrm{L}}{ }^{2} R_{\mathrm{L}}=v_{\mathrm{s}}{ }^{2} \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)^{2}}$
$P_{\mathrm{s}}=\left(2 v_{\mathrm{s}}\right)^{2} /\left(2 R_{\mathrm{s}}+\frac{2 R_{\mathrm{s}} R_{\mathrm{L}}}{2 R_{\mathrm{s}}+R_{\mathrm{L}}}\right)$
$P_{\mathrm{s}}=v_{\mathrm{s}} \cdot i_{\mathrm{L}}=i_{\mathrm{L}}{ }^{\dot{2}}\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)=\frac{\nu_{\mathrm{s}}{ }^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}$
Thus $\eta=\left(\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}+R_{\mathrm{L}}}\right)$.
η tends to zerof for $R_{\mathrm{L}} / R_{\mathrm{s}}<1$ and η tendsto
its maximum value of one for $R_{\mathrm{L}} R_{\mathrm{s}} \gg 1$ If for example $R_{\mathrm{s}}=50 \Omega$ then 80% efficiency of transfer of power into R_{L} occurs for $R_{\mathrm{L}}=200 \Omega$ and $P_{\mathrm{L}}=64 \%$ of
P_{Lmax}. However, there is obviously no $P_{\text {Lmax }}$. However, there is obviously no
optimum choice, as can be seen from the plot of Fig. 2, which shows that for η of 100%, i.e. no power dissipated in the
source, then no power flows in the source, then no power flows in th circuit, since $R_{\mathrm{L}} / R_{\mathrm{s}} \rightarrow \infty$ and $i_{\mathrm{L}} \rightarrow 0$. would expect, if R_{s} and v_{s} are reall nown in any circuit. At first sight, ecessary is to generate the Thevenin quivalent source, which gives R_{s} and v_{s}; hence, η may be obtained from the expression given previously. This, however, is a fallacy, which can be exposed by the example of Fig. 3 .
Taking the special case of $v_{1}=2 v_{\mathrm{s}}$ and
$R_{1}=2 R_{\text {s }}$, then $R_{1}=2 R_{\mathrm{s}}$, then applying Thevenin's a voltage source of v_{s} and a source resistance of R_{s}, exactly as in the circuit of Fig. 1. Clearly, P_{L} is the same but is $\stackrel{P_{s} \text { s }}{\text { For Fig. 3: }}$
$=\left(2+\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}}\right) \frac{v_{\mathrm{s}}^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}=P_{\mathrm{s} 3}$:
For Fig. 1:
$P_{\mathrm{s}}=\frac{\nu_{\mathrm{s}}{ }^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}=P_{\mathrm{s} 1}=\frac{P_{\mathrm{s} 3}}{\left(2+\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}}\right)}$

Fig. 1. Simple series circuit with $\eta=R_{1}$
$R_{\mathrm{L}}+R_{\mathrm{S}}$
Fig. 2. For maximum η no power can flow.

Fig. 3. Thevenin equivalent of this circuit gives different η to circuit of Fig. 1
and so $P_{s 3}>P_{s 1}$ whatever the choice of $R_{\mathrm{L}} / R_{\mathrm{s}}$.
Unles Source we cannot use the expression for η derived earlier, so what is going wrong? The mistake lies in the use of Thevenin's Theorem. In deriving the Thevenin equivalent source the current and voltage at the terminals of the
equivalent source are exactly equal to those of the original source. But there is no one-to-one correspondence between the previous sources and the new Thevenin equivalent voltage source voltages and all the source resistors and so the power delivered from the Thevenin source is in general different to the power from the original source. he difference between P_{s} and P_{L} must ance P_{D}, i.e., $P_{\mathrm{D}}=P_{s} P_{\mathrm{L}}$. As already stated, in obtaining the Thevenin equivalent source P_{L} remains the same, so $P_{\mathrm{s}}-P_{\mathrm{D}}$ must remain the same; since the source powers are different, P_{D} is dif-
ferent in the two circuits; the power dissipated in the source resistance of the Thevenin equivalent source is not equal to the power dissipated in the riginal source
The same argument applies if a cur tage source, as in the circuit of Fig. which is a Norton equivalent of Fig. 1.

$$
P_{\mathrm{L}}=i_{\mathrm{L}}{ }^{2} R_{\mathrm{L}}=\left(\frac{v_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{S}}}\right)^{2} R_{\mathrm{L}}
$$

$P_{\mathrm{s}}=i_{\mathrm{s}} \cdot v_{\mathrm{L}}=\left(\frac{v_{\mathrm{s}}}{R_{\mathrm{s}}}\right)^{2}\left(\frac{R_{\mathrm{L}} R_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{s}}}\right)$
$=\frac{\nu_{\mathrm{s}}{ }^{2}}{\left(R_{\mathrm{L}}+R_{\mathrm{s}}\right)} \frac{R_{\mathrm{L}}}{R_{\mathrm{s}}}$
$\eta=\frac{P_{\mathrm{L}}}{P_{\mathrm{s}}}=\frac{R_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{s}}}$
Continued on page 78

60
WIRELESS WORLD, MARCH 1980

LETMNESS TOTTHEE EDTMOR

STATUS OF ENGINEERS Regarding the status of engineers, as dis-
cussed in your editorials and correspon cussed in your editorials and correspon-
dence. One factor seems to be overlooked viz, that the status and respect given to
doctors and lawyers increases exponentially doctors and lawyers increases exponentially
with age, right up to their 70 s , whereas that of an engineer, however experienced reaches a plateau at 25 and then drops of
rapidly beyond 35 . How many jobs offered in $W W$ advertisements are open to anyone over 30? Precious few!
Nor is this
Nor is this exclusive to Britain, but has
already spread to the USA and is now beginning to be felt in Japan.
In countries devoted to production in
support of the almighty deutschmark support of the almighty deutschmark, en
gineers are still accorded some degree of gineers are still accordded some degree of
respect in their middle years, but one wonders how long it will stay so when pro duction there also falters, as indeed it must
eventually in a world of resource shortages. The sad fact is that engineers don't stay engineers long enough to get status! It would be interesting to know what old engineers do,
for a living. Is there a suitable subject for a survey there? (They can't all retire at 40!) A final word: no matter how much headway young engineers make, the days when
they might have made it socially have gone. Yet, somehow, I don't ever expect to see aged doctors or lawyers being thrown out of work by computers or young graduates!
Ronald G . Yourg
Peacehaven
Sussex

DIGITAL FILTERS

Perhaps, following Mr Gray's letter in your January 1980 issue, I could raise a point which is not always well-made in text book
and which space did not permit me to touch on in my article on simple digital filters in the Jily 1979 issue.
A digital filter algorithm performs calcula-
ions and outputs certain values at fixed tions and outputs certain values at fixed
intervals of time. Strictly speaking, the output values are only meaningfull at those exac
instants, and what happens in between is no nstants, and what happens in between in no
defined; hence the plots of the points only in Figures 2 and 5 of my article.
This, however, is not particularly helpful in some analogue waveform for further use or inspection on an oscilloscope. As soon as we recovery and make implicit assumptions about the technique involved. Most frequently, as Mr Gray's Fig. 1 implies, a zero-order-hold is assumed, the properties of
which have been well discussed by Zuch which have been well discussed by Zuch_{1}
and include an average delay of half the iteration interval and a linear phase response
equal to 90° lag at the Nyquist frequency. If equal to $90^{\circ} \mathrm{lag}$ at the Nyquist frequency. If Mr Gray finds a phase advance of half the
iteration interval, I would suggest he ha made an error in interpreting or ploting h results.
Other Other methods for waveform recovery are,
however available. A first-order hold retains the value of the previous iteration as well as
the present one, and uses this data to

generate a slope which will, one hopes, lead towards the point where the next sample will arrive as shown here. This method effects a
significant reeduction in the dell second order hold is also possible and this will generate sections or parabolae. I do not know of any applications in real time where this technique is used, but it is not uncom-
mon for curve generation in the computer mon for curve generation in the computer
numerical control of milling machines, for example.
These
These factors are of importance to the practical engineer, since they imply that the
exact response obtained from a digital filter as we approach the Nyquist frequency may owe as much to the wavelo
technique as to the filter itself.
Incidentally, the reference to Nyquist derives from the communications field; it may be of interest to note that in the process
industries virtually the same law is known as Shannon's Theorem ${ }^{2}$ but the formulation places greater emphasis on the exclusion of P.A.L. Ham
NEI Parsons Lta

NE. Larsoms Ltd
Newcastle-upon-Tyn

References

1. E. L. Zuch: "DDesigning with a sample.-hold won't
be a problem if you use the right circuit.". Electronic Design 23, November 8, 1978, pp. 84-89. 2.E. . . Lowe \& \& A. E. Hidden: "Computer Control in

Process Industries." Peter Peregrinus Ltd 1971 in | 2.E.I. |
| :--- |
| $\substack{\text { Process } \\ \text { 180. }}$ |

AUDITORY CUES IN
STEREOPHONY
We were most interested in Philip Vanderin the September 1979 issue. The whole piece begs one particular question - what does the current craze of multimiking do for our
stereo perception? Perhaps Mr Vanderlyn stereo perception? Perhaps Mr Vanderlyn
could be persuaded to relate his research experiences in this aspect. I, for one, would
be interested in a researcher's views of this
particular debasement of Alan Blumlein's original ideas.
But more immediately I would question Mr Vanderlyn's attribution of "in the head""
sounds to dummy head derived stereo, listened to on headphones. We are currently marketing a number of binaural records and
would claim that "in the head" sounds are would claim that "in the head" sounds are
the last things being achieved. Real distance the last things being achieved. Real distance
"out of the head" effects are clearly discernible on many parts of our discs. True, it is opposed to "out front" images, but to describe the effect as "in the head" clearly defeats the reason for the marketing of our discs. ${ }_{\text {M. S. Skeet }}$
Whitetower Record
The author replies: First of all multimiking is not a current craze; it has been going on records. Secondly, it owes nothing to research, sol have no experience of it in tha not for publication, but I would agree with him that it represents a debasement o Blumlein's conception. There is a fourth
aspect, the economic one. Very early in the aspect, the economic one. Very early in the
practice of stereo recording using "pure practice of stereo recording using "pure
Blumlein" techniques it was found difficult
and time consuming to and time consuming to get a good musica patience and understanding on the part of patience and understanding on the part of
musicians and conductors. It was thus very
expensive and the multimiking technique expensive and the multimiking technique
came into being, which permitted subse quent editing and which produced a colourquent editing and which produced a colourat one time whether it fell foul of the Trade Descriptions Act, but because the definition
of stereophony in BS 661 is so widely drawn appears it can unblushingly be called stereo many very satisfying stereo records have been made that would stet or could not had it
been necessary, to kep to tereticall been necessary to keep to theoretically rigo-
bous methods. We have to bear in mind, as I

WIRELESS WORLD. MARCH 1980
am sure Mr Skeet does, that record com
panies exist to sell home entertainmen panies exist to sell home entertainmen
rather than to demonstrate scientific truths My comments on headphone stereo were based on early experiences when it was
found impossible to create a convincing image using dummy head techniques. The expression "in the head" was a form of words used to describe the vivid but unnatural headphones readily available were thos affectionately known as "cans" - excellent or reading Morse code signals but not really
suited for serious listening Now that are many excellent high quality headphone the situation is different and it is possible to isten with pleasure to all types of pro than one recent occasion I have heard real istic external sounds, but these have been
from special recordings which possible cues due to the pinna. I am incline to think that the role of the pinna, which has only recently been studied in detail, ha feel that the head rotation cue is an essentia part of any convicingly external image, a any rate over an appreciable period of time
and there seems to be no possible way to nd there seems to be no possible way to
provide this using transducers held in a fixed relationship to the ears.

RUMBLE CANCELIATION FILTER
Congratulations to J. P. Macaulay for his stereo disc reproduction without degrading the deep bass responsene (Circuit Ideas, Sep tember 1979 issue). The concept of turning
he lowest bass into a mono signal is s. beautifully simple that one wonders why this echnique is not widely used.
After having studied the discrete circuit
design, I decided to build a simplified and
High performance rumble
noaration is maitained only down to
100 Hz . Lower frequencies are

mproved version, making use of today' hows how a TLO74 quad op-amp ic. is use ogether with a simpler matrixing system to form a rumble cancellation filter (as I prefe to call it) with near ideal characteristics. The extremely low distortion coupled with high slew-rate and bandwidth, that is hard to bea using even complex discrete designs. Ex-
pected figures will be around $10 \mu \mathrm{~V}$ noise $<0.002 \%$ (to 20 kHz) and $f_{u} \approx$ several MHz . In his filter Mr Macaulay uses
equal C -values (33 nF); this will not give a utterworth characteristic. For this a ratio o $2: 1$ is required, hence my corrected values of $\underset{4}{47 \text { and } 22 n F}$
It should be kept in mind that the rumble If it is ever to be installed in a system where it may be switched in or out of service, inver ing gain-of-one buffers must be used for th Jens Langvad
Ring Instrument
Ring Instrum
Vanlose
Denmark

TRICKLE DOWN OR

 TRICKLE UP?Referring to the November editorial, I
thought that in general the "tricklo thought that in general the "trickle down" theory of reducing poverty by development
was discredited, though there are exceptions. Where a country has a resource which can be turned into cash, as for example Britain's
North Sea oil, there is a case for using the cash for capital investment in industry. This was also the Shah's policy in Iran; and no-one who hasseen the traffic jams (of private cars)
in Teheran would suppose that the beneficiaries of this policy were very few in number, though they might well be a minority of the whole population. On the issue of intermediate technology versius
capital-intensive technology, there is also the
prestige consideration which may be ratioabread whould g to buy buy the most up-to-date.
Those who are seriously interested in
under-developed countries should such as "Income Distribution Policy in Developing Countries" by Irma Adelman and Sherman Robinson.* Much of this book is
concerned with the technicalities of constructing a computer model (for South Korea); but the authors do discuss various economic policies and conclude that the in such countries is to assist agriculture. A pocket calculator is of no use to an under-nourished family; and such things as
radio communication to call a doctor improve the amenities but do not reduce the povery. The positive contribution of elececonomy, which makes it possible to economy, which makes ill possible to answer such-and-such?", without actually
implementing an implementing an experiment which might
prove to be disastrous. "Chips with everything" may be all right for developed countries, but we should be modest enough to admit that high technology alone cannot
solve all the world's problems D. A. Bell
Walbington
D.A. Bell
Walkington
Beverley

Beverley
Yorks
${ }^{*}$ Published for the World Bank by Oxford Unive sisy tress, 1978. There are many books on income
distruturn, but this one a a is concerned with
developing countries and (b) developing countries and (b) has a computer model,
based on continuing processes rather than extr based on continuing processes rather than extraa
polation of past data, which appears to match
reality successfuly. polation of past dat
reaily successully.

3D TELEVISION
K. P. Wood (October 1979 letters) suggests
that it is impossible to provide ster viewing of a moving object on a flat screen without viewer discomfort. This he claims is because of conflict between focusing and convergence clues received by the viewer
However, his claims are pure hypothesis without any attempt to provide qualitative or quantitative evidence.
A major factor he omits to mention is grapherrive, a suve to fuctly yll painters and phototheir arts and crafts. A very strong illusion of
depth is conveyed in mono pictures whether paintings or proyejected kinematograph films by the correct use of perspective in images on
a flat surface. If Mr Wood is correct there vould be a strong case for supposing that pewing of painted pictures would cause viewer discomfort. It is true that viewing of red/green anal glyph 3 D images is tiring, but this is because $i t$ is quite an abnormal situation for one eye whilst the other It is also true that viewing of a large number of early 3D polaroind colour f films
produced headaches and eye strain. Howerer it has now been established, as a result of subject, that this was not due to the factors
postulated by Mr Wood. It was because the postulated by Mr Wood. It was because the
camera men and directors who made the
early 3 D films did not properly understand

HERE BE DRAGONS
In his piece on audio in your 'Into the 'eighIn his piece on audio in your 'nto the eigh-
ties' feature (January issue), Adrian Hope.
expresses his surprise that so many people expresses his surprise that so many people
"are prepared to venture so far north into the "are prepared to venture so far north into the
provinces as to make Harrogate an annual provinces as to make Harrogate an annual
success ... If Wireless World were to
consider holding "Remark that consider holding a 'Remark that could have
been better put' competition then I been better put' competition, then I am
confident that Mr Hope would stand every chance of winning first prize.
Attacks by marauding
Attacks by marauding bands of savage
Yorkshiremen, in their distinctive flat cand Yorkshiremen, in their distinctive flat caps,,
on traffic on the Al have lessened markedly in recent years, and many travellers from the south have claimed that it is now relatively
safe to venture north - even well beyond safe to venture north - even well beyond
Watford. The only real danger lies in any reckless suge estion to one of the natives that
Harrogate is a curious place to hold a natioHarrogate is a curious place to hold a natio-
nal exhibition: black puddings can be unpleasant, particularly when stuffed whole into unlikely places.
W. Dampier
Wallington

Surrey

THE "WHY? OF ELECTRONICS
I was just reflecting on our good fortune in having in Wireless World a high quality technical journal which (unlike the
numerous trade journals) is not afraid to
discuss the why? and what for? numerous trade journals) is not afraid to
discuss the why? and what for? of electronics
as well as the how? when I came across Mr as well as the how? when I came across Mr
Greenwood's letter (January issue) calling Greenwood's letter (January issue) calling
for an end to "political rhetoric" in your editorials.
Unlike Unlike Mr Greenwood I think it needs
more than a few "delightful moments of more than a rew "delightful moments of
humour" to "demonstrate that technical humour to "demonstrate that technical
people can be human." Technology is
changing soiety changing society now faster than at any
other time: some changes are for the better, other time: some changes are for the better,
some for the worse. The epeople who find their
lives changed as a lives changed as a result of the engineers'
combined efforts will not think us "human" if combined efforts will not think us "human" if
we blindly and mechanically create what
we're told to without sparing so much as a we're told to without sparing so much as a
comment in a teccnnical journal on the desirability of what we are creating. Techno-
logy has great potential for improving the logy has great potential for improving the
quality of life - if applied sensibly. As
technologists we must make our contribu-
ion to the discussion of how io rop to ensibly, rather than allow its control to pas with financial gain in the short term.
So, long may Wireless World continue its
perceptive and searching editorial comment ercceptive and searching editorial comment,
ollowed I hope by vigorous discussion in the letters pages.
P. A. D. Bird
S South Brent
Devon

"TRIVIAL" AMPLIFIER

 DESIGNSIn reply to Mr Duncan's letter "Trivial amplifier designs", in the January issue;
whilst I am in general agreement with his whist I am in general agreement with have missed the object of my article ("Low distortion amplification," October 19999.
The nature and control of dist The nature and control of distortion and
other important parameters in a.f. amplificaother important parameters in a.f. amplifica-
tion are generally misunderstood, resulting in the growth of jargon and mysticism (as witnessed by Mr Duncan). The aim of my
article was to combat this by defining the problems in engineering terms and using the solutions as design criteria for a gain cell
block. Although the article described its use in a domestic sound reproduction system it could have equally been applied to a laboratory amplifier, low distortion oscilla Tor, distortion factor meter etc.
To take Mr Duncan's objectio
logical conclusion, should design in any on
field of engineering be terinated ield of engineering be terminated due to
B. J. Codd

Medical Physics Department

FAILURE OF DISTRESS
SIGNALS AT SEA
was surprised on reading the letter by R. ohn Wiseman (June) about the problem encountered at sea operating at 500 kHz . In heory a solutio sols and water effectively insulator, which makes electrical contact with the wire
The practical solution is the use of e.h.t.
cable, so that there is no electrical contact cable, so that there is no electrical contact
with the conductor. A 150 -watt input has been used, but much higher levels are has
lee
lieved possible. In the experiment, RS Comieved possible. In the experiment,
ponents 18 kV e.h.t. cable was used. I feel sure that this is a late, but effective
nswer, and with lives at sate answer, and with lives at stake the cost is very small.
Peter C. Greg
Aeter C. Gregory, G4 HXV
Ahton-under-Lyne
${ }_{\text {Lancs }}^{\text {Ashto }}$
Mr Wiseman replies:
The use of e.h.t. cable would be similar in principle to the naval practice of using p..v.c
coated whip aerials. However the staten. that "... a solution of salt water effectively earths the r.f. power... is an over simplification. sea leters from people a
sea reporting severe problems with 'wet sea reporting severe problems with wet
insulators' at 500 kHz but less effect at 2182 kHz and similar, and very little at all a h.f. in the 4 to 21 MHz marine bands, and my
own experience confirms that Since Gregory gives an amateur call sign, the
experiments he refers to will have been
carried out in the amateur bands 1.8 to 30
MHz. A ship's main aerial is invariably greater than $1 / 4$ wave-length at h.f., and why h.f. is almost unaffected I leave to others to less than $1 / 4$ wavelength and its capacitance forms part of the pi-coupler resonantiance tank circuit. It is,' in my opinion, change in an-
tenna capacitance due to Kohlrausch Effect tenna capacitance due to Kohlrausch Effect
that is the cause of the problem at 500 kHz . that is the cause of the problem at 500 kHz .
For reasons of economics, the pi-coupler range of adjustment will be much en less at 500
kHz than at h.f., due to the size of com. kHz than at h.f., due to the size of com-
ponents required. The pi-coupler may be able to accommodate changes in aerial parameters at h.f. which it cannot accom
modate at 500 kHz . E.h.t. cable of the automotive kind would
present some problems. Coated with salt present some problems. Coated with salt
water it might become a concentric capacitor, aggravating pi-coupler problems. It
would lack mechanical strength and would not stand up to rough treatment; once the insulation was cut or bruised it would be
rendered ineffective, and it does not lend rendered ineffective, and it does not lend
itself to easy repair if broken by a wharf crane, for example
John Wiseman

PROGRAMMABLE

 NOTES FOR MUSICAL INSTRUMENTSMr Waters is incorrect on several points in his letter in your January issue.
The system of temperament The system of temperament that was discarded when equal temperament was
adopted about 140 years ago (not 250 as Mr Waters states) was mean tone temperament, not natural or just temperament. Mean tone
temperament is based on natural temperatemperament is based on natural tempera-
ment with a few judicious changes which produce harmonious music in 6 major keys and 3 minor keys. The remaining keys suffe-
from the effects of the changes and have from the effects of the changes and have
rough harmonies. Handel and Bach had instruments tuned to this system. Equal temperament is an artificial system not
based on the natural system at all. The result is that all keys have equally roug es but music can be played in al
The system I am proposing uses natura Temperament, which sounds best, and allows modulation to any key. Surely, had such a system been available to Bach he would hav
adopted it in favour of equal temperament. would be interested to find out in which ways Mr Waters's musician friends consider my possible hitherto!
M. Robins
Bilton

Bilton
Rugby I was very interested in M. Robins's letter
"Programmable Notes for Musical Instru
"mots" in the November 1979 issue since ments" in the November 1979, issue since
did some research on the possibilities a couple of years ago for my own amusement. would like to mention, for anyone interested in pursuing this subject, the excellent treatise
"On the Sensations of Tone" by Helmholtz "On the Sensations of Tone" by Helmholtz,
which is published by Dover with many extra which is published by Dover with many extra
appendices and tables; the theoretical work on harmony and tuning has never been bettered. to perform a perfect job of just tuning is more
requires some skill in analysing harmonies
to derive the data, and more than a few extra keys to enter it into the instrument. I do no believe that performers would welcome ad this complexity.
My research co
My research concerned a computer mode
of an instrument which would analyse the
music in real tim edge gained. Actually, it is theoreticall edge gained. Actually, it is theoretically
impossible to make a perfect job of this in
real time real time, as M . Robins probably knows
because the context o , because the context of the harmony must be
known, including what follows. My work showed that only about half of the job could
be done this be done this way, and it would not be cheap consumes.
Just temperament is interesting, but it is
not obvious that it is musically desirable all not obvious that it is musically desirable all the time. Unaccompanied singing, such a
the close harmony which I have done, tend to go flat, for good reasons related to the tuning changes that occur when modulating in just temperament. This would be unac
ceptable in an instrument. Further, the sound of chords in just temperament is very smooth
and restful, lacking the her and restful, lacking the high frequency beats
which are normal in any other temperament These are important, since they add "life" to the instrument, which would be dull and nonotonous without them. The power of equal temperament, is now such a central
feature of music that it cannot be discarded feature of music that it cannot be discarded
as would prove necessary with the progress ive flattening otherwise encountered in jus emperament.
I believe that just temperament is not a
marketable feature, since the research and development costs would be considerable and my work has shown. Nevertheless, it would be nice to see some organ manufacturer offe as an optional (and no doubt very expens
ve) feature. Otherwise it should remain wha thas been for the last few hundred years cuide used by musicians, but not blindly followed, in aiming at acceptable compro mises in tuning.
Michael C. Bailey
Wincheste
Hants

C-D IGNITION PROBLEMS Recent letters in Wireless World on motor
cycle c.d. mentioned "false triggering" and cycle c.a. mentioned "false triggering" and
"cross talk". My problem does not involve
motor cycles but mishehaviour motor cycles but misbehaviour of c.d. igni-
tion in cars of various units built. This shows up as a slight roughness in the engine at about 2000 r.p.m.
My first unit which showed this problem
was the Marston, but a cure was effected by was te Marston, but a cure was effected by
changing the triggering circuit to a unijunction circuit. Perfect operation was enjoyed
for some months until the h w for some months until the h.t. lead worked its
way out of the coil, causing the thyristor and way out of the coil, causing the thyristor and
the unijunction to expire. Upon fitting new
components, the unit once more worked but components, the unit once more worked but
with this irritating misfire. Many hours of - with this iirritating misfire. Many hours of
work produced no cure, so the Marston unit
was was regretfully removed. The distributor was even removed from the car as well as the coil
and driven by a lathe while monitorig the and driven by a lathe while monitoring the
h.t. voltage with a good oscilloscope, but this h.t.
showed one owly a perfect train of sparks.
Then I came a cross Then I came across an article in Electronic
Ensineering of December Engineering of December 1974 written by
Jorgen Hoyer of Motorola, who advanced a morgen Hoyer of Motorola, who advanced a
mostitersting theory as to the cause of this
erratic misfire - to quote: "Very often the
petrol/air mixture is far from being ideal. It ay be too rich or too weak and usually is very unevenly mixed, in fact, an ignitable
mixture may not have even reached the spark gap at the time the first arc occurs.
Under these conditions Under these conditions an arc must b
maintained for the lucky event where in maintained for the lucky event where in
flammable gas happens to move into the sark gap." Mr Hoyer goes on to describe a mple method of increasing the period. This he accomplished by connecting a su
diode across the ignition coil primary.
However this However, this made no difference at al
when tried on my car. Also a nit which when tried on my car. Also a unit which
would not function correctly on my ca would not function correctly on my car
would perform well on a different make of car.
Another peculiar point is that tests were
done Another peculiar point is that tests were
done on three identical units buitt on p.c.bs
with machine wound inverter transformers with machine wound inverter transformers.
Two gave the same erratic miss but the third woo gave the same erratic mist sut he third could be found in the units, which were all factory built.
If any of your readers have had similar this is a problem I would dearly like to solve. D. J. Bruyns
Withank

Republic of South Africa

INTERFERENCE WITH MSF RECEPTION
A popular student project is the reception of
the Rugby transmitter (MSF) which puts out the Rugby transmitter (MSF) which puts out
time and frequency standards and can be used to drive a self-sestang clock.
The service area is large; it
The service area is large, it is claimed' to
include most of Europe but in some areas include most of Europe but in some areas
interfering signals may cause trouble. There is a powerful transmitter 1800 hertz away from MSF and in the Manchester area it is larger. A relatively wide band receiver is needed to make use of the coded time signals and this project has defeated several of our
students. May we suggest that anyone considering he problem should do a few measurements in his area before e building the complete
clock? It would be interesting to know if your clock? It would be interesting to know if your
readers have ever had trouble with commerreaders have ever had troub
cial equipment in this area.
Another source of interference is the
fourth harmonic of the tv line timebase but this can be solved by moving the receiver. T. G. Izatt
Preston Poly
M. D. Samain
M.D. Samain
University of Salford

Reference
Number 40, Mechical Communications, Volume 14,

We understand that the interfering transmitter (on 61.8 kHz) is in fact H.M.S. Inskip, between Preser

MAGAZINE PROJECTS

AND KITS

It occurs to me that many of your readers
may be puzzled as to why different commay be puzzled as to why different com-
panies quote such widely differing prices for
kits kits of parts for projects in the magazines,
and possibly a few words explaining this and possibly a few words explaining this
might be of interest.

The fact is that when engineers design
build projects, they use any materials which pronen to be at hand, and then when the project is finalised, a list of parts is sent ou
by the magazine to the leading companies for

pricing. If comp

If completely standard parts, normally asrried in stock by the firms concerned, are
specified, then there is no problem, and all companies should be able to offer competitive prices. Unfortunately, this is seldo
the situation, and very often special no stock items have to be obtained. Even this in
itself would be unimportant itself would be unimportant if one knew how many kits were going to sell, but it is usually
pure crystal-ball gazing, and because of this pure crystal-ball gazing, and because of this
the special parts have to be costed on a
one-off basis. one-off basis.
Another problem is that for convenience a
designer often uses a purely trade source obtain his parts. This would not be parct to
larly important if larly important if retailers were able to buy
competitively from these sources, but competitively from these sources, but one of
the best and most reliable trade sources offers no discount for the retailer, and will not sell direct to retail customers, which the end product becomes very expensive. This letter is not meant as a criticism of
designers or designers or magazines, but might assist
designers to provide economical kits Thire is no doubt that if there was more liaison at the design stage with the retailers concerned many of these problems could be overcome. A. Marshall (Lo
A. Marshall (London) Ltd
London NW6

HIJACKING CARFAX? D. P. Leggatt of the BBC (October letters) in replying to Peter Manson's letter expresses optimism that the designers of the Carfax
service have adequate means to control the service have adequate means to control the
security and authenticity of the information security and authenticity of the information-
broadcast. Surely such a system is fundamentally vulnerable to hijacking for the
following reasons. following reasons.
Firstly, inexpensive Carfax decoders are
going to be manufactured in large quantities herefore their principles of large quantities; therefore their principles of operation cannot
be inordinately complex. Secondly, some 80
genuine transmitters througo will be quite openly broadcasting the "secret" initiation code every few minutes. Thirdly, test generators producing the
appropriate signals will, no doubt, be extens ively used in service workshops.
But perhas,
But, perhaps, traffic wardens will have
their duties extended to their duties extended to ensure that no obscene, humorous
being transmitted.
Mandy Petersen

Swindon Wilts

The BBC replies:

with my rather will not let me get away with my rather generalised statement o
Carfax security, and she makes some ver Celevant comments. Certainly 'secret' initiating codes would
have their limitations echniques available including comparison between the originated and transmitted
signals. As ever, it will be difficult to ensure abso-
signals. lute secerrity and I I must confess that our
obscenity detector is not yet perfected! bscenity detector is not yet perfected! Head of Engineering Information Dept
BBC, London W1

REVERSE POLISH
NOTATION
Concerning the comments on Reverse Polish notation by W. H. Powell in August letters, otation as opposed to its Reverse Polish notation as opposed to its Reverse Polish
form. The last-mentioned may be usefu when minimising keystrokes on a calculato but my policy is to mathe machine do th
However, the notation for formulae is not of great significance. Far more controversial
is Mr Powell's belief that languages should use Reverse Polish notation throughout (presumably including key words like IF ELSE) for efficiency. I would suggest that his notions of efficiency are concerned purely
with the output from a compiler (i.e. smaller faster) and should not influence the appea rance of the written program, which on hopes is a clear, readable document making
use of control and data structures (Pascal perhaps?). Apart from certain high-speed, real-time applications, I have no objection to
clearly readable programs with a few inefficiencies.
Michael Parr
Barnsley
West Yorkshire

DIGITALLY CONTROLLED ATTENUATOR
read the Circuit Idea on the digitally conDecember issue with interest. The AD75XX series of c.m.o.s. d-to-a converters are a inherently 4 -quadrant multiplying devices.
They can all therefore be used for audio applications, one of which Mr Taylor describes. It is not a large step of course to
implement a stereo balance and volume control system using two such circuits run ning from updown counters fed serially Perhaps I could emphasize one or two
general points with regard to such audio applications. Compared with analogueapplications. Compared with analogue
controlled electronic attenuators, digitally
controlled attenuators offer some distinct controlled attenuators offer some disti ures are significantly better, bandwidth is significantly wider and noise immunity greatly improved. In adaition, sech sy under
have the facility for remote operation und touch-switch or microprocessor control. Could I also make a recommendation with regard to Mr Taylor's circuit?
of the operational amplifier should be done with care. The output resistance of the d.a.c.
changes with code-setting changes with code-setting (as does its
capacitance). This means that an amplifier with a large input-offset should be avoided as a code-dependent variable output-offset will result. This may produce significant nise
during code change As the dac has a few pF output capacitance typically $37-120 \mathrm{pF}$ (depending on code), capacitive feedbackcompensation must be employed when using
wide-bandwidth amplifiers. This is usually about $10-20 \mathrm{pF}$ depending on the amplifier. Instability may occur at some code setshows a gain-adjust potentiometer in the feedback loop of his system. I would suggest a fixed, low noise, resistor of value $1 \mathrm{k} \Omega$ in the feedback loop and include a $2 \mathrm{k} \Omega$ adjustable
resistor in the in the input line to the AD7520. (However, I suspect that there is only a
of better than 0.1% in anything other that In conclusion
In conclusion, perhaps to back up the
above comments. Mr Taylor and other audio engineers may be interested to know tha Analog Devices intend introducing a devic
specifically aimed for the audio field, the specirically aimed for the adio field, th
AD7110, in mid March 1980. The AD7110 is monolithic c.m.o.s. digitally controlled atte uator in a 16 -pin d.i.l. package. The analo as the 6 -bit digital-input code increases. The muttenuation range is 0 to 88.5 dB (plus ful muting facility) in 1.5 dB steps. The tota (0.002%) and the signal-to-noise ratio i 124dB. When tested with a commonly available audio op-amp,
250 kHz was observe
M. I. Stephenson
Analog Devices B.V.

Limerick
Republic of Ireland
WHAT'S SO NATURAL ABOUT e?
would like to suggest two thoughts on the article "What's so natural about e?" by J. C. Finlay in your December 1979 issue. .irst,
perhaps I have missed something, but I do not see how memorising or writing a "trick such as $193 / 71$ for e is easier or simpler than
memorising or writing e itself. Particularly since if you have memorised e to five decimal places (2.71828) you have also memorised it of nine decimal places (2.718281828)
Second, I agree that it is a nice touch for some calculator manufacturers to prin we are not limited to what the manufacture may print on the calculator. I find it con enient to keep a small data booklet in m . as an accessory for the calculator.
In closing, I enjoyed reading the article nd the rest of the issue, and look forward Tenny Lode
Englewood
Colorado, USA

AND NOW THE PICOBEL ontrary to Anne King' Contrary to Anne King's letter (November mportant application in musical recording
eproduction systems. In fact, a length rricle in International Audio Review 3 was devoted entirely to the ear's sensitivity to 2 - 5 millibel deviations in frequency response
and the consequent need for very precise and the consequent need for very precis.
RIAA de-emphasis in phono preamplifiers. This article discussed how those traditio nal experiments, which established the en
trenched belief about our hearing insen sitivity to loudness changes on single tones of less than 1 dB , are irrelevant to our hearing sensitivity to frequency response deviation n broadband signals, such as music.
Our experiments have established that can hear frequency response differences in he 2 -5 millibel area, as has empirical work by
our friend Stanley Lipshitz and others. Not our friend Stanley Lipshitz and others. No
only can we reliably detect that there is only can we reilably detect that there is
difference (which is a sufficient criterion to establish an auditory threshold). The dif correctly describe it, qualitatively, and, ye ore remarkably, quantitatively.

For example, we aurally compared one
re-amplifier a against a straight wire on music. In spite of the masking presence of the pre-amplifier's distortion byproducts, which
seemed to add distorted bright energy to seemed to add distorted bright energy to
music above 5 kHz , we also heard what seemed to be a purely tonal balance anomaly. We aurally judged this anomaly to be a
plateau hinged at the 2120 Hz RIAA breakplateau hinged at the 2120 Hz RIAA break-
point, and estimated its magnitude at 20 mB Only then did we measure the pre-amp. Its actual RIAA frequency response was flat measured 20 mB in magnitude ($\pm 1 \mathrm{mB}$). The measured 20 mB in magnitude $(\pm 1 \mathrm{mB})$. The
pre-amplifier's designer and manufacturer, pre-amplitier's designer and manuacturer,
who witnessed this experiment, asked why we even bothered with measurements, if the
human ear could be that perceptive and human ear
calibrated. Incidentally, our measuring technique presented in IAR 3 can reliably measure
down to about 0.2 millibels, unlike the 0.5 dB limitation of Ms King's meters. And since IAR 3 we have extended our measuring sensitivity (using cilferential techniques
into the picobel region. Therefore, and in syimpathy with Mr Marks' 'esire, ot end
dect decimal point confusion, I herewith enter a plea for the picobel as the standard unit on
commerce! Also, if we are to capitalize en gineering unit names in deference to the scientists they honour, let us do the job righ
and revert trom bel to Bell not Bel. That bell and revert from bel to Bell, not Bel. That bell
which tolls is hardly ever capitalized, so the confusion should be minimal. J. Peter Moncrieff Berkeley
California US

In the UK it is standard practice to use capita In the UK it is standard practice to use capital
letters for the abbreviations of unit names but no for the full names. - Ed.

LIQUID-STATE
AMPLIFIER
The late Professor Fleming's account of the thermionic diode (November 1979 issue)
reminded me of a little search for the 'missing' counterpart of the vacuum gas and
solid-state devices - the liquid-state sing counterpart of the vacuum gas and
solid.state devices - the liquid-state
amplifier. Athough it might be argued that this is the
biological a mplifier of choice, as, for example, in the form of the 'cochlear
microphonic' signal generathe avalable in microphonic' signal generator available in
the mammalian ear (a signal capable of driving an ordinary audio amplifier), I was interested to find that a liquid 'ionic diode', at least is easy to arrange. A diode made with a wire dipped in dilute sulphuric acid gave a wire dipped in dilute sulphuric acia gave a
forward to reverse conductance ratio better
than 25.1 for signals of less than +100 V than $25: 1$ for signals of less than $\pm 100 \mathrm{mV}$ schmann (Southampton) was able to describe a two-membrane 'ionic triode' which he
constructed as a research sudunt Considering the speeds of the various charge carriers estimated below
$>10^{5} \mathrm{~m} . \mathrm{s}^{-1}$ in a hard valve,
$>10^{5} \mathrm{~m} . \mathrm{s}^{-1}$ in a hard valve,
$<10^{-2} \mathrm{~m} . \mathrm{s}^{-1}$ in a copper wire
$\sim 10^{-7} \mathrm{~m} . \mathrm{s}^{-1}$ in an ionic liquid
for an electric field of $1 \mathrm{~V}^{-1}, \mathrm{I}$ expect the frequent response of the wet triode is, well wet.
B. Whatcott
Addestone Addlestone
Surrey

This article describes how an
ordinary key operated mechanical
door lock can easily be converted to door lock can easily be converted to a
4 -digit, multi-code electronic security lock, using non-volatile logic devices. The data in these devices can be
altered easily but once entered can be retained for a considerable time even 4 -digit combination codes are easily programmed and the versatility of the design means that the system does no need clearing down. It is a simple digit code (some $\mathbf{6 5 , 0 0 0}$ odd combinations) to any greater n of codes by adding more quad latches. Apart from the normal door atch such a system could find
to be restricted, and could also be
rted to be remote controlied.
The MN9102 quad latch is one of the Novol range of integrated circuit produced using the Plessey metas This is essentially a p-channel, metal ate process, but with the additiona eature that variable-threshold memory ransistors may be fabricated alongside ransistors. These memory transistor can be used to retain data even in the absence of applied power and therefore rovide the facility of non-volatile d orage in standard m.o.s. circuits. at least one year, in the absence o applied power, over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ tem erature range. The device runs of tandard m.o.s. supplies of +5 V generate the high-voltage supply normally associated with m.n.o.s. memory evices, and requires only a single external capacitor to act as a charge reservoir for supplying current when is applied to the four inputs is written into the memory when the SAVE con trol is taken to a logic 0 level and the data subsequently appears on the four outputs. Typically, ten million 'save performance of the device is impaired The stored data is automatically res tored to the outputs whenever power is reapplied. An output enable is also
evel, presents a high-impedance stat on each data output line, thus permit ting multiplexed operation.
he MN9102 quad latch to use hexadecimal digit data in the absence o applied power. When this data is inter rogated with the correct incoming data delay before an electro-mechanically operated mortice catch is opened for $21 / 2$ econds. The delay and opening times may be varied easily and are included ower The number and conserve power. The number of digits in the he number of quad latches
Data is entered into the system via a hexadecimal keyboard with a diode resistor decoder, if a 16 , single-pole the data may be entered using a 16 key ncoder (74C922) if a 4×4 matrix output keyboard is in use. Either system generates the four data signals and anykey,' which is normally low but gnal is used to generate the timin pulses. The four data signals are fed into c.m.0.S. quad D-type flip-flop (74 C 175) hro two mond key' to prevent any keyboard wounce effects. Once clocked, this data is then compared with the stored data in the

MN9102 using a c.m.o.s. four-bit mag etic comparator (14585). If the key oard data is the same as the store ata, then the $\mathrm{A}=\mathrm{B}$ output of the comuad latches, comparators and flip-flop re cascaded as follows. The outputs o he nth flip-flop are connected to th inputs of the $(n+1)$ th flip-flop, with a RCLK to CLK, clear held high, ind the Q outputs unused. The outputs he nth flip-flop are also connected to inputs of the nth quad latch (for use programming), and to the 1 st set of puts of the nth quad latch are connected the second set of inputs of the nth comparator, of which the nth $A=B$ output is connected to the (nth +1)t $\mathrm{A}=\mathrm{B}$ comparator input. Other commo connexions are $\mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$ held low
with their respective outputs unused for the 14585 , and output enable held high and Save inputs common for program ming on the quad latch.
When a 4 -digit code is stored th following sequence of events will occu when the code is interrogated. If, fo example, the code stored was 9102 , the in latch B, 1 in latch C and 9 in latch D. The 9 when entered would be clocked in to the output of flip-flop A and compared

Fig. 1. Internal block diagrám of MN9 102 quad latch.

Fig. 2. Circuit diagram of lock logic.
with 2 in latch A, giving $\mathrm{A}=\mathrm{B}$ on comparator A as a entered, the 9 is clocked. When the the 1 is flip-flop B and compared with the 0 in latch B ; hence $\mathrm{A}=\mathrm{B}$ out of comparator B will also be low level. The 1 will be at the output of flip-flop A and will be Compared with the 2 in latch A , so the remain low. The third digit 0 will cause the 9 to be clocked to the output of lip-flop C, the 1 to the output of flip-flop B and the 0 to the output of flip-flop A. be low, as will the outputs of the other two comparators. The final digit 2 , when entered, will cause the correct digits to fall in place with the stored A, the 0 s in position B, the 1 s in position C and finally the 9 s will match in position D: the $\mathrm{A}=\mathrm{B}$ outputs of all comparators will go high, indicating that the
code was correct.

To program a new code, it is entered and the save inputs to all latches ar witch for that time The switching are connected to the inputs of a bistable which have pull up resistors to +5 V and the centre pole is at 0 V . When the
switch is operated, the outputs chang state, giving a high-to-low transition on on one of the bistable outputs, going it is this signal which is used as the common Save.
To make the system more secur

Fig. 3. Timing diagram of logic.

Fig. 4. Power supply and switch driver
there is a $2^{1 / 2}$ second delay after the correct code has been found. This is achieved by means of a 14528 retrigger able c.m.o.s. monostable, which is positive-edge triggered from SRCLK power-up pulse. When Q a delayed again it is ANDed with 'C Q code' to give 'Door open', which is normally low but which goes high $2 \frac{1}{2}$ seconds after 'Correct code' goes high. The positive edge of 'Door-open' triggerrs another 0 output, when it $21 / 2$ seconds, is ANDed with 'Correct code', thus producing a 'Door enable pulse. Although this signal is normally a low level, going high $2 / 2$ seconds before going low again, the values of the resis
may be varied to give different 'Door enable delays and widths. The 'Door enable' signal is used to drive two bipolar electromechanically operated mortice. The second ${ }^{\text {anically operated mor- }}$ high-power p-n-p transistor, which is designed to switch between the unregulated supply and zero volts to provide 1.5 for the solenoid. A l.e.d. and resistor are used to indicate when the door is open
Further modifications may be made activate an alarm when more than three incorrect codes are entered or possibly control the logic remotely, depending on the user's requirements. The system mum modifications.
switched on at one alarm time and off at the next. A counter and decoder allows the system to be expanded for the con-alarm-enable/inhibit circuit can be modified to select one of two different alarm-time programmes by taking the alarm-inhibit line to a spare address input on the memoy, grounding pin 13 of $\mathrm{IC}_{13 \mathrm{~b}}$ by adding two flip-flops to the chain in IC_{7} and connecting the two new outputs to the spare memory address pins. If the alarm-enable/inhibit section is not req or IC_{2}. Alternatively, if the alarm enable/inhibit section is duplicated and the two alarm-inhibit lines are connected to the spare memory address obtained. If this modification is made the control logic IC_{16} and $\mathrm{IC}_{16 \mathrm{c}}$ must be altered so that keys $0,1,2$ and 3 select the appropriate programmes.
The timer can be used with a conventional digital clock which has plex control lines coded in binary. A midnight pulse and the inputs to $\mathrm{IC}_{13 \mathrm{a}}$ and $\mathrm{IC}_{13 \mathrm{~b}}$ have to be decoded from the display. The five inputs to IC_{13} can be replaced by the tens-of-seconds C bit
driving a monostable to give a pulse of at least 100 ms duration at the start of each minute. If switch-on-reset is not needed the set-time-pulse input is rounded and the circuit around $\operatorname{Tr}_{7} \mathrm{Tr}^{7}$ omitted

Acknowledgements

The authors thank the management of EMI Electronics for permission to staff in the Operations Training an Education department for their encou agement and assistance.

NIEWS OFFTMIE MONTME

Finniston - what the Institutions say

The long-awaited Finniston Report (see p36
Jan., p88 March and p46 June, 1978 issues) has now been officially published, some weeks after much of it had been leaked.
Having had time to consider the proposals in Having had time to consider the proposals in
the report, the professional institutions are welcoming it, but they also have reserva-
tions. Council of the IERE was disappointed
The
to To Counci of Finniston Committtee had
tittind that aby about what the IERE considered little to say about what the IERE considered
to be the root cause of the inadequate perto e the root cause of the inadequate per-
formance of the nation's manufacturing formance of the hate general lack of en-
industry, namely to
thusiasm for work at non-professional levels thusiasm for work at non-professional levels
and the consequent low standard of industand the consequent low standard of British
rial industry. They also regretted that the summary report failed to give credit to the engineers concerned with the design and
manufacture of electronic equipment and with systems engineering, and that it did not reflect "the high regard in which the British
seas."
This institution particularly endorsed the committee's recommendations to improve and extend the balance of theory and prac-
tice in the pattern of education and training for the engineer of the future. The Council
also welcomed the formation of the British Engineering Authority and in particular the Engineering Authority, and in particular the
proposal that this would endeavour to bring together groups such as working engineers, employers, engineering teachers, public
agencies and the Government, who have common interests but who, at present, tend to act in relative isolation from each other because there
linking them.
Concern was felt about the proposal that Concern was felt about the proposal that staff" to implement its policies. This propo-
sal, they thought, could deny the Authority direct access to the institutions, which according to the IERE are "the focal points of the best expertise available in each of the
engineering disciplines at both Board and engineering disciplines at both Board and
working levels". It is the IERE Council's view
that this would also create an unnecessarily that this would also create an unnecessarily
expensive new area of bureaucracy for the registration of engineers in place of the
present self-financed resources available in pand through the engineering institutions.
power, the Counci los. However, the Council was pleased to note
the recommendation that the learned society thask of the institutions might be advan--
tageous to the profession as a whole. "This", tageous to the profession as a whole. "This",
the council said, "reflected the point made by the council said, "reflected the point made by
the IERE President, Professor Gosling, in his 1979 Inaugural Address, that it was perhaps
time that they gave careful consideration to time that they gave careful consideration to
whether the engineering profession was not whether the engineering profession was not
now two professions - the old with its
cientific basis of Newtonian mechanics and now two professions - the old wirs ins
scientifif casis of Newtonian mechanics and
the new, as represented by the IERE, whose the new, as represented by the IERE, whose
business was founded on quantum business was founded on quantum
mechanics and the new concepts of network
theory, control theory and information science".
Finally, the IERE was relieved to see the Finally, the IERE was relieved to see the
Finniston team's unanimous view that the
new statutory register must embrace the
current stock of engineers as well as the
engineers of the future. They were, however, very concerned to note that the Committee ould not agree on how this should be done. The IEE particularly welcomed the pro-
osed distinction between courses for posed distinction beeween courses for
students and enginering students, each nvolving substantial cooperation betwee industry and the schools of eniginering
They also welcomed the committee's hope that registration by the engineerin authority would become in effect a licence to
practice, but regretted that the Committee had not put forward firm proposals for legis lation to implement that view. "If registra
tion does not open avenues of employment in tion does not open avenues of employment in
imited areas otherwise closed to engineers, me authority will be deprived of the strength eeded to implement its policy", said an IE The Chairman and Officers of the CEI, after discussions with the presidents of nember institutions and the chairman an senior members of the Engineers Registra
tion Board (ERB), made a statement in which hey endorsed the Finniston Report's ana ysis of the ills of the British manufacturin
industry and its broad objectives for recog nising and improving the contributions to be made by professional engineers. The council particularly supported the view that
employers must be encouraged to look on their engineers as valuable investments to be developed, rather than assets to be exploited nd the need for thorough practical trainin had reservations about the proposed methods of attaining these objectives, and the relevance of these proposals to the prac
tical and urgent needs of manufacturin industry, they thought, would require critical examination.
According
According to the CEI, the benefits to
ndustry claimed by the Finniston Report could be achieved much more cheaply and quickly by an evolutionary process - that of the engineering institutions to meet the
replacing this machinery, which operates in the public interest under the authority of the
CEI's Royal Charter, by the British En gineering Authority.
The CEI was strongly opposed to the
recommendation that all members recommendation that all members of the
proposed BEA should be appointed by the proposed BEA should be appointed by the
Secretary of State, as they saw this as having
their Secretary of State, as they saw this as having
their affairs taken out of their hands - it is
characteristic of characteristic of all professions in the UK
that they are mainly self-regulating and that they are mainly self-regulating and
consist of members who have been elected or nominated by the profession itself.
Being aware that the new
Being aware that the new engineers -
products of the proposed education arrange products of the proposed education arrange-
ments - could not become fully qualified
ensineers engineers before the late 1980 s , and that for
the next half-century the majority of the next half-century the majority of prac-
tising engineers will be those who now exist Lising engineers will be those who now exist
or who are under training by the present or who are under trials, the CEI warn that unless the
methoo morale of these engineers and internationa
confidence in their ability are fully confidence in their ability are fully
maintained, very great damage would be caused to the national interest. ure to make any proposals for improving the ure to make any proposals for improving the
education, training and progression of engineering technicians was a serious weakness.
A union view
Ken Gill, General Secretary of the Technical Administrative and Supervisory Section of
the AUEW was disappointed with the the AUEW was disappointed with the
Finniston Report because the Committee of Enquiry had failed to deal with the pay and
status of engineers. "It is surprising that in a status of engineers. "It is surprising that in a
report of 253 pages only about six pages are report of 253 pages only about six pages are'
devoted to engineers' pay and the role of the trade unions in the engineering industry", he
said. TASS, he said in a recent report blamed trade unions in the engeerng teport, blamed
said TASS he said in arecent rect
the engineering professions' lack of status on the engineering professions' lack of status on
inadequate salaries and the lack of rationa salary structures. "If urgent consideration is
not given to raising the salary and status of not given to raising the salary and status of
engineers, the British manufacturing in engineers, the British manufacturing in-
dustry will fail to attract and recruit a large
enough number of new engineers", he added.

"In the beginning......."

Analysis of the cosmic microwave back

Analysis of the cosmic microwave back-
ground radiation left over from the "big
bang." the primordial explosion which it is bround radiation left over from the "big
bang," the primordial explosion which it is
believed began our universe, suggests the believed began our universe, suggests the existence of clusters of galaxies containing
hundreds of millions of stars. Data collected by NASA's U-2 aircraft in the upper tmosphere from remnants of radiation galaxy, of which we are a part, is hurtling galaxy, of which we are a part, is hurtling
toward the constellation Virgo at more than million miles an hour, under the gravitation
around it.
Universit.
University of California scientists believe
the supercluster contains 30 to 40% more the supercluster contains 30 to 04% more
galaxies than are normally found in the same volume of space and that it may be 2 billion light years across.
The supercluster

1\% of the volume of the observable universe,
which extends through 10 billion light years which extends through 10 billion light years
of space. Dr. George Smoot has pointed out that not enough time has elapsed since the "big bang" for such a supercluster to have formed, which implies that such a gigantic
concentration of mass dates back to the beginning of the universe: "If one such huge concentration of matter exists,"," says Dr.
Smoot, "there are probably others," Smoot, "there are probably others The new findings introduce an element of
doubt into the previously accepted idea that the event which started the universe about 15 billion years ago was a powerful but tightly
controlled expansion of matter in all directions at a uniform speed. The supercluster's
existence implies that the primordial firebl existence implies that the primordial firebal
was "lumpy" and that the vast force released were by no means uniform in their
effects.

BBC responds to WARC '79 frequency proposals

In a recent engineering press statement the
BBC outlines its reactions to the WARC '79 frequency allocations, those for Region 1
having been given in our February 1980 issue.

The Corporation's response is generally
favourable where domestic broadcasting is favourable where domestic broadcasting
concerned, but is "less happy with the impli-
cations for external services on the h.f cations for external services on the h.f. extension of the v.h.f. band II to 108 MHz is agreement does not provide for complete clearance for broadcasting use until 1995, some additional programme channels can be
made available much earlier than this and made available much earlier than this, and
services which now have to share the three national v.h.f. channels can be separated. The band II extension is also welcomed for the
future development of local radio services.
Allocation of the sub-band $519.5-526.5 \mathrm{kHz}$ welcomed for use with the BBC Carfa
motoring information system, but such use is subject to non-interference with navigatio
nal beacons in neighbouring countries; the

BBC would have been happier with an exctlusive allocation.
Extension of the v.h.f. television band III by two band is to be re-developed after closure of the 405 -line service. The current WARC proposals require the closure of this service
by 31st December 1986 although the Annan report suggested a phased programme of closure beginning in the early programme of u.h.f. television bands the provision of up to
four additional channels will considerably four additional channels will considerably
ease the planning of further extensions of u.h.f. coverage throughout the country. Allocations for s.h.f. satellite links are also
welcomed, but the rearrangement of the h. welcomed, but the rearrangement of the h.f.
bands for overseas broadcasting falls consid erably short of the BBC's wishes, especially at frequencies below 9 MHz where no extensions have been agreed.
The statement ends with the BBC asserting its support for the reservations entered by the UK and the USA delegations to the whatever steps may be necessary to maintain whatever steps may be necessary to maintain
the effectiveness of our external services."

Scripts by wire at Bush House

Two mini-computers and an array of dis
storage units form the heart of a "scripts wire" system now in operation at the BBC's
Bush House, the Overseas Broadcasting department's headquarters. partment's headquarters.
Some 30 million scripts covering news stories, talks and features can now be distributed each year by electronics to more newsroom contains 39 v.d.u.s and journalists dictate their stories to operators who type
them into the system. Once written, the story can be directed by the computer to specific
con can be directed by the computer to specific
language sections and can be printed out in individual offices.
Both short pieces and longer talks can be
written into the Written into the system which can accom-
modate items of up to 5000 words; news stories are kept tn file for seven days, current affairs talk
for 100 day
A selective "list" can be drawn up on the v.d.u. according to subject matter, or the full
list of talks may be checked. On the other list of talks may be checked. On the other
hand, stories which only apply to a particular part of the world may be called up forticulay part or the world may be caled up for display
Tro electronic distribution system is con
troled by two General trolled by two General Automation $16 / 440$
mini-processors. Both are in continuus operation and receive the same input, but only one provides output. If a fault occurs,
the standby processor can take over the standby processor can take over
immediately. Each processor is associated immediately. Each processor is associated
with a 2 megabyte fixed-head disc and a 24
megabyte disc pack megabyte disc pack drive. New material is
entered on magnetic tape and red to microfiche for archive storage. red to microfiche for archive storage.
Each of the 137 v.d.u.s distributed around
the building can undertake full the building can undertake full text editing, but only those in the news, talks and features
areas are free to amend stories in the centra) areas are free to amend stories in the central
store. Hard copies are available from 85
printers strategically placed printers strategically placed amongst the
offices.

Ken Clayson, engineering manager in
charge of the new system charge of the new system says, "The system
is saving an enormous amount of time and paper and it lets us make far wider use of the material we prepare. Every one of the broadcasting sections at Bush House now has
access to every script prepared here. In the days when we relied entirely on paper that
was just not was just not possible.
The hardware was provided by the data system division of ITT Business Systems to a specification set up by the BBC's Capital
Projects Department.

Microwave unit detects cancer
An instrument containing a sensitive
radiometer capable of measung temperaradiometer capable of measuring tempera-
ture variations of less than 01° Celsius ure variations of less than 0.1° Celsius
(0.2. ${ }^{\circ}$ Fahrenheit), part of a microwave appli-
cator made by Microwave Associates, an cator made company, is being used to locate
american consibly
and and possibly destroy cancerous tissue. The
equipment has located tumours in 14 known cancer patients and has detected a cancerous
site in site in one patient which was not revealed by
the use of conventional techniques the use of conventional techniques.
The principal advantages offered by the new instrument are that it does not emit
harmul radiation, can be harmful radiation, can be used outside the
body and could become relatively inexpens oody and could beco
ive if mass-produced.
Cancerous tissue is hotter than healthy surrounding tissue and conventional
methods such as infra-red thermography can methods such as infra-red thermography can
detect tumours near the surface of the skin, but the new method permits checking at a
much deeper body level. much deeper body level.
If the instrument
If the instrument proves itself effective,
after an extensive series of hospital and ater an extensive series of hospital and
laboratory tests, it could become standard
equipment in equipment in doctor's surgeries. Patients
could be quickly and easily tested for many could be quickly and easily tested for many
forms of cancer, just as they are now tested in a routine manner for heart malfunction by means of an electrocardiograph.
The treatment side of the new
The treatment side of the new instrument's
use would involve microwave heating of a tumour to dostroy cancer cells. Tumours
have a relatively poor vascular have a relatively poor vascular system
(compared with healthy tissue) and roseararched with helieve that a tumour will and heat
faster and remain hot faster and remain hot longer than surroun-
ding tissue because there ding tissue because there are fewer blood
vessels to carry the heat away. vessels to carry the heat away.
The next stage in the instr
programme will be its use on cancers in large
animals in the Norfolk (Virgial programme will be its use on cancers in large
animals in the Norfolk, (Virginia) Medical
School laboratories.

Mullard to "axe" 900 jobs
Mullard's decision to "streamline" its tube production business will, according to a
report in The Times, 16 th Jan 1980, result in
the the loss of 900 jobs at its Durham and
Simonstone, Lancashire works. The main changes, to take pl next two years, will involve further automa-
tion and alterations to quality tion and alterations to quality controma- de-
partments; these moves are seen as partments; these moves are seen as
necessary to compete with the high output of quality tubes and tv receivers from Japanese manufacturers and in the face of the deve-
lopment of domestic products using tv-like lopment
tubes.
The
The National Economic and Development
Office has recently identified Office has recently identified certain trends
in the tv and components industries and study of production costs of colour television sets in the UK, Japan, South Korea and W .
Germany has shown that J . Germany has shown that Japan in particular
gains a high cost advantage from its overall gains a high cost advantage from its overall
higher level of investment in advanced automated plant, superior efficiency in
manufacturing and design and more rigid manufacturing and design and
quality control of components.
The Muliard decision reflects
of these findings and also links up with NEDO's main recommendations which in-
clude the "rationalization" of UK tv producclude the "rationalization" of UK tv produc-
tion into larger units producing five times the current number of receivers, more involve-
ment directly with Japanese technology, to ment directly with Japanese technology, to
improve and introduce more new designs and improve and introduce more new designs and
to carry out more research and development. Only about 100 of the threatened jobs will goin 1980 and Mullard says that it "intends to
continue to invest substantially in the picture continue to inve
tube business."

A modern tv tube production line in Finland using "Japanese" technology, in this case a Hitachi range
of 20in, 22 in and 26 in tubes of the 'in-line" variety, featuring quick-start heater; 110° deflection angle, temperature-compensated shadow mask, electrostatic focusing and self-converging integrated
neck components. This automated plant, operated by the Automation Group, Valmet Oy, Finland is expected to be producing about 500,000 tubes by the end of 1981 .

Multi-..e.d. aircraft instruments under test

 the USAF Filigh Dynamicics Laboratory as part of ajoint projeiet between the USAF and | the Canadian De |
| :--- |
| and Commere |

Theomericeie intended as replacement or the mixture of dials and c.r.t. displays at
present found in aircraft cockpits: it is computer-controlled and is designed to pro-computer-controlled and is designed to pro-
vide the pilot with information on various subsystems, such as navigation or weapon
delivery. This information can then be called up at the flick of a switch, the data being depicted on the l.e.d. screen. Walter Melnick, of the Flight Dynamics
Laboratory says that
is an advance on the c.r.t. form due to its less cumbersome nature and higher reliability he estimates a c.r.t. display life of 500 hours
and an l.e.d. display life of 10,000 hours. Furthermore, while all information can be lost in the event of tube failure, even if
several thousands of l.e.ds fail, the display can still be read. Several technical solutions to the problem were examined before deciding on the l.e.d. method, and this was eventually speected
because it is adaptable to the "building lock" mode of construction, where one inch variety of display sizes.
variety of display sizes.
Bowmar Instruments, of Weybridge, are the UK representatives of the makers of the

Getting wise to electronic mail

According to a report from Mackintosh
International and Communications Studies and Planning Ltd, organizations which rely
on post and telecommunications services should urgently review their communica-
tions needs to take tions needs to take account of the o,"
ities presented by "electronic mail." ities presented by "electronic mail."
Thar report, entitled "Electronic Mail: user alternatives in the 1980"" stresses that it is
not too late to take advantage of not too late to take advantage of the cost-
effectiveness of equipment and services effectiveness of equipment and services
currently available. However, prompt action is necessary, says the report, because users
must take transitional measures over
period of time to ensure that the benefits of word processors, text and graphic terminals and the n
realised. One of the rert's non-technical business users about the scope and benefits of electronic mail equipment and tervicom on offer from manufacturers stresses that users should prepare for the introduction of the enhanced telex service, to
be known as Teletex, which. begins operation Germany and Sweden sometime in 1980

Disobedient

spacecraft

Radio contact with Voyager 1 was lost on 3rd January just after the spacecraft had been
commanded to thrusters for a trajectory correction. The manoeuvre apparently took place but the
antenna alignment was not entirely she antenna alignment was not entirely suc-
cessful. However, later in the day NASA controllers received confirmation that command signals intended to switch on the
low-gain antenna and place it in a two-way rexeption mode, had been received and
executed. executed.
Efforts
Efforts are being made to 'correct the
antenna/Earth alignment the problem antenna/Earth alignment, the problem

requiring some analysis to ensure that | attitude control fuel is not wasted. |
| :--- |
| Voyeager 1 was launchat in | Voyager 1 was launched in September 1977

and flew past Jupiter in March 1979. The spacecraft is now 660 million miles from
Earth and is scheduled to encounter Saturn Earth and is scheduled to encounter Saturn
in November 1980. Voyager 2 , a sister cratt, is due to encounter Saturn in August 1981.

News in brief

The FCC is proposing to award additional frequencies for c.b. use on s.s.b. operation
and may also liberalize rules on the distances and may also liberaiize rules on the distances
c.b. stations are permitted to work over. The
use of yariable frequenc c.bs. of tariansere frequency oscillators may also
be permitted.

Car to telephone service

 launched in NorwichA new car telephone service, claimed by Air
Call Ltd. as the first of its kind in England, was star
1980.
This
enables This service, known as "interconnect", enables direct two-way communication betthe public telephone network and is now
to the public telephone network and is now
available to Air Call's East Anglian cus. tomers. The company's branch manager, Derek. Cunningham, sasy that Interconnect
will be available to subscribers in addition to will be available to subscribers in addition to
the existing range of services, which includes the existing range of services, which includes
message handling, "talking bleeper" and
elephone answering services In order to house the additional equipment
equired, the Norwich control complex has required, the Norwich control complex has
been moved to larger premises in the city centre, and plans have been drawn up to extend the Interconnect service to most of
the company's 34 control centres during the the company
coming year.
Car telephone users can take advantage of
the new service without necessarily he new service without necessarily changing the equipment in use; the cost of all
messages and inland telephone calls is in-cluded in the rental charge.

ITT researcher wins award

Paul Barton, a research engineer with
Standard Telecommunication Laboratories, Standard Telecommunication Laboratories,
has received the William E. Jackson award
from the Radio Technical Commission for from the Radio T
Aeronautics (USA)
Mr Barton won the award, consisting of an
An honorarium and commemorative plaque, for
his thesis, "Airborne Signal Processing for hise Mitrowave Doppler Landing System,",
thebmitted for a Ph.D degree from University
submin submitted for a Ph.D degree from University
College, London. He graduated from College, London. He graduated from
Churchill College, Cambridge with an honours degree in mechanical sciences and
joined STL in 1965, working with the late joined STL in 1965, working with the late
Alec Reeves on pulse code modulation and electro-optic systems.
In 1971, he began work on the microwave
landing system (MLS) programme, being

Personal

computer

The Sinclair Research ZX80 computer measures $218 \times 170 \times 50 \mathrm{~mm}$, weighs 120 za and
features a 1 kbyte memory, claimed to be "equivalent to to 4 kbytes in a conventional computer." How the latter trick is accom-
plished is not explained in the otherwise
useful literature which plished is not explained in the otherwise
useful literature which comes with the computer, and which includes BASIC program-
ming instrict ming instructions, presented in a light-
hearted manner, ideal for the beginner to the mysteries of programming.
A cassette player can be used directly to
store programs, and the unit dispenses with store programs, and the unit dispenses with
the need for a dedicated v.d.u. by virtue of the the need for a dedicated v.d.u. by virtue of the
"plug in to your tv aerial socket" facility. A
further useful feater further useful feature, especially for the
beginner (and the unit seems particularly beginner (and the unit seems particularly
suitable for use in schools, where "computer suitable for use in schools, where "computer
science" is becoming a popular subject) is the science isror check. This ensures that only
syntan eactically correct lines can be added to
synt syntactically correct lines can be added to
the program list at the top of the page. A
marker identifies a syntax error and thus the program list at the top of the page. A
marker identifies a syntax error and thus
helps to speed up the production of an error helps to speed up the production of an error
free program.
The display format is 24 lines of 32 characters; the unit costs $£ 99.95$ inc. v.a.t. fully acters, the unit costs $£ 99.95$ inc. v.a.t. fully
assembled, becoming available in March. or
in kit form at $£ 77.95$ inc. v.a.t. Prices include in kit form at $£ 77.95$ inc. v.a.t. Prices include
the cost of the programming manual, but the cost of the programming manual, but
exclude mains adaptors, which cost $£ 8.95$ exxlude
extra.
particularly concerned with the design of the Doppler scanning system and in 1976 began
the work which led to the winning thesis. He the work which led to the winning thesis. He
holds some 20 patents in the MLS and radar fields and is currently leading a team working on radar and adaptive systems at STL. The award is a memorial to William E.
Jackson, a pioneer in the development and Jackson, a aioneer in the development and
implementation of the present airways, air traffic control and aviation communication systems.

News in brief

The British Amateur Electronics Club, which
claims that it is the only national amateur electronics club, is seeking help from estabished local electronics groups, its main
problem being difficulty in finding premises for meetings. The mainly scattered nature of the membership adds to the problem and if
local groups are willing' to welcome BAEC members to their meetings, they would be prepared to pay an affiliation fee. The chairman of the BAEC will send out a copy of
a simple questionnaire to any reader who is a simple questionnaire to any reader who is
interested enough to contact him: Cyril Bogod, "Dickens", 26 Forrest Rd, Penarth, S. or telephone 0222707813
The IEETE have the following lecture events Sth March, J. J. Fallon of MK. Electric will present "Standardisation of the proposed international plug and socket system" at the
Duke of Cornwall Hotel, Millbay Rd, Plymouth, at 8 p.m.
17th March, "Robots and telechirs for Industry", presented by Prof. M. W. Thring at
the IEE Building, Savoy Place, London, at 6

Frequency change for BBC's

Ventnor Radio 3 Transmitter

In order to escape interference from the
French transmitter at Caen in Normandy, the BBC's Ventnor v.h.f. transminter has changed frequency (on 11.1t February). The previous
frequency of 91.6 MHz has been changed to fequency of 91.6 MHz has been changed to
91.7 MHz , but no change will be made to the 9h. MHz R, but no change will be made to the
by this Radio $1 / 2 / 4$ frequencies also relayed

20th March, G. W. Lord, Merlin Gerin
(UK), will present "Up-to-date development in moulded case circuit breakeres", at the the
Y.E.B. Staff Restaurant, 161 Gelderd Rd, Y.E.B. Staff Resta
Leeds 12 at 2 p.m.

27th March, "Lasers and their uses" will be
presented by J. Dawson of the REME School rresented by J. Dawson of the REME Schoo of Engineering, at the REME School of Elec-
tronic Engineering, Aborfield, Reading, at ${ }^{7.30}$ p.m. 28th March, G. Simpson, Champion Fire
Defence Ltd, will lecture on "Developments, Detandards and future of automatic alarm
systems systems" at the Royal Dublin Hotel, O'Con nell St, Dublin, at 8 p.m.
The IERE propose to hold the following
conferences in $1980 \cdot 22$-25 Aril "The eleconferences in 1980: 22-25 April, "The elec
tronic office", at 99 Gower St, London WCl; $3-4$ July, "Re-training in the electronics industry, for the microprocessor age", at 99
Gow
Gower St Gower St, and 16-18 Sept.. "Electromagnetic
compatibility", at the University of Compatibility
The IEE will be running a conference on Radio transmitters and modulation technierence programme and application forms are available from the IEE, Savoy Place,
London, WC2. Hotel booking forms are London, waile from Exp-O-Tel, Strand House,
Great West Rd, Brentford, Middlesex.

The 22nd International Festival of Sound will eo open to the public from Wednesday 5 th to Sunday 9th March 1980 at the Palais des
Congres, Porte Maillot, Paris. Doors Congres, Porte Maillot, Paris. Doors open
from 10 a.m. until 8 p.m., open late on Saturday the 8th - until 10 p.m. Trade days are from 2nd to 4th March inclusive. On Monday
3rd March two conference debates will be 3rd March two conference debates will be
held on the subjects "tapes and high fidelity" hald "on the subbects "tapes and higization and high fidelity".
An exhibition to mark the 50th anniversaryof Baird's 30 -line tv transmissions from the (March 1930) is being staged by the Science Museum, Kensington, beginning 27 March 1980, running for six months.
The show is called "The Great Optical
Illusion" and te Illusion" and the introductory exhibit will
illustrate first principles of television. The "illusion" theme will be set up by other demonstrations, including "chromakey", an electronic overlay method which will show
visitors as performing a feat of aerial daring, visitors as performing a feat of aerial daring,
while "front axial projection"- will insert Them optically into a projected scene.
There will be a range of exhbibits There will be a range of exhibits outlining
the development of television since the hening of the 405 -line sevrvice in 1936 and
ppen period room settings will show a montage of
contemporary programmes on restored ontemporary programmes on restored
feceivers of appropriate vintage; these will receivers of appropriate vintage; these win
include a pre-war receiver with a five-inch
tube and a projection set of the early 'fifties.

The station is located at St. Boniface Down, on a height above the town, serving
bout 6,000 people in the Ventnor and Bonchurch area and also relays the tv ser-
vices of $B B C 1, B B C 2$, and ITV on 625 lines vices of $\mathrm{BBCL}, \mathrm{BBC2}$, and ITV on 625 lines
(uh.f.) and the 405 -line $\mathrm{BBC1}$ service. Liseners will only have to change the tuning of
their receivers by a very small amount.

More frequency allocations

WARC 79 decisions for 10 GHz to 275 GHz in Region 1

Last month we published a list o 1979 World Administrative Radio Con ference, Geneva, for radio services up to 10 GHz . We now present the remainder of the frequency allocations made at
WARC 79 , from 10 GHz up to 275 GHz . This, of course, is the microwave region of the eleetromagnetic spectrum (centimetre and millimetre wavelengths) and is occupied mainly by services such as radar, satellites, and radio astro-
nomy. These highly specialized activities are of interest to oily a small number of Wireless World readers, but in fact this $10-275 \mathrm{GHz}$ region is also available for amateur radio, while the ting satellites, which of course will eventually bring new types of domestic receivers and aerials to homes every where (see January 1979 issue, pp 38 42).

As in the February issue, the list is restricted to Region 1 as defined by the Union (Europe, Africa Middle East and Russia) and does not include the numerous footnotes giving additions, qualifications etc for particular coun the three categories of service, primary permitted and secondary (see February for definitions); but as a rough guide the first code letter, to the immediate right
of the frequency band, is almost always a primary service, while the remainder reading from left to right are divided among primary, permitted and secon dary services in that order. Where are always on the extreme right. In the previous frequency plan embodied in the Radio Regulation following bands were ne of 1959, the any services: $48-50 \mathrm{GHz}, 71-84 \mathrm{GHz}, 152$ $170 \mathrm{GHz}, 200-220 \mathrm{GHz}$ and $240-250 \mathrm{GHz}$ It will be seen from the list that these are now occupied. Neither the 1959 nor the 1979 conference attempted to allocate anything to the region above 275 GHz of less than a millimetre) but this remains available for individual governments to permit experimenta-
tion. In particular a need has been identified for making spectral line measure278 GHz to 381 GHz .

An outstanding feature of the present list is the large amount of spectrum space now allocated to satellites exploration and so on. It will be seen from the key to the code letters that, of the traditional categories of terrestrial
radio services (fixed, mobile broadcasting, amateur etc.), there are now seven which also have a corresponding service provided through satellites. The coming of the satellite was first recog-
nized officially by the ITU at an Extraordinary Administrative Radio Conference in 1963 and there have been others devoted to satellites since then. The results of a 1971 space conference were already embodied in the Radio
Regulations before WARC 79 took place, and now, following WARC 79, three further ITU conferences devoted to space services have planned or requested.
As we reported earlier, the UK Home
Office had recommended that allocations for communication satellites should be increased in the $.10-11 \mathrm{GHz}$ band. This proposal has in fact been generously implemented by a doubling original allocation was 500 MHz , split into two separated bands at 10.95 11.2 GHz and $11.45-11.7 \mathrm{GHz}$, but now, as will be seen from the list, there is a new, uninterrupted 1 GHz band from 10.7 to tion satellites are a primary service (although this band is shared with fixed and mobile primary services). In the space-to-Earth direction of communication this is a world-wide alloca-
tion. In the Earth-to-space direction however, for Region 1 countries this band is also reserved for use by feeder
*The first, in mid 1983, will be a Regional tailed planning (channel assignments, orbit positions etc.) of broadcasting satellite services in the 12 GHz band and associated uplinks in Region . The second, in Conference for planning uplinks to broadcasting satellites operating in the 12 GHz
band in Regions 1 and 3 . The third will be a World Administrative Radio Conference for space services in general; it is expected to be held in two sessions, possibly in Autumn 1984 and early 1986, but detailed ar
will be decided later by the ITU.
links ("uplinks") to broadcasting satel lites (see later).
The needs of the maritime mobilesatellite as well as the aeronautical mobile-satellite services have been prowill be able to develop without hind rance. Also, in principle, it was agreed to provide for the feeder links to these services in the bands allocated below 10 GHz . A mobile-satelite service has been provided for this Passive sensing
exploration-satellite and space research services have been identified as important activities in the future, so provision has been made for these services. Fur where the fixed and mobile (except aeronautical mobile) services operate under a footnote provision, agreements have been reached to either limit or over a period of time with the intention of providing exclusive bands for the passive services. Increases have been made to the spectrum space allocated to research In addition provision has been made for the operation of radars on board spacecraft in these services (e.g. in the band $35.5-35.6 \mathrm{GHz}$).

Key to code letters in list

WIRELESS WORLD, MARCH 1980

Additional spectrum has been allocated to the fixed-satellite service in the Earth-to-space direction near 100 GHz , broadcasting-satellite service in the band $85-86 \mathrm{GHz}$ (see later).
The pattern of allocations to the inter-satellite and the fixed-satellite services follow, in general, that laid
down by the 1971 space conference, with the former concentrated in the absorption bands so as to take advantage of the atmospheric attenuation to
provide shielding between the space and the surface (or low-altitude) systems, and the latter located in parts of bands.
In certain combinations of space and
terrestrial services the conference conterrestrial services the conference con-
cluded that there was inadequate inforcluded that there was inadequate infor-
mation on sharing. Footnotes were therefore added to reflect this uncertainty and the subjects were referred to
the CCIR for further study.
The three bands for direct broadcast

Table of frequency allocations for Region 1			
GHz	Services	GHz	Services
10.0-10.45	${ }_{\text {F, M, RL, A }}$	360.-37.0	SAT, F, M, S
$10.45-10.50$ $10.50-10.55$	$\underset{\substack{\text { RL, } \mathrm{M}, \mathrm{RL}, \mathrm{AS}}}{\text { den }}$		F, M
${ }^{10.55-10.60}$	${ }_{\mathrm{F}, \mathrm{M}, \mathrm{RL}}^{\mathrm{F}}$		$\stackrel{\text { F.Fs }}{ }$
10.60-10.68	SAT, F, M, RA, S, RL	${ }_{40.0-40.5}$	F, FS, M, MS
10.68-10.70	SAT, RA, S	${ }^{40.5 .42 .5}$	BS, B, F, M
10.70-11.70	F. FS, M	42.5.43.5	F.FS, M, RA
11.70-12.50	F, B, BS, M	43.5.47.0	M, MS, RN, RNS
12.50-12.75		470.47.2	${ }_{\text {A , AS }}$
${ }^{12.755-13.25}$	F, FS, M, S	472.-50.2	F, FS, M
-$13.25-13.40$ $13.40-14.00$	${ }_{\text {RL, }}^{\text {AR }}$, , SFTS	50.2-5.94	SAT, F, M, S
14.00-14.25	FS, RN, S.	${ }^{\text {che }}$ 51.4.54.25	${ }_{\text {F,Fs, }} \mathrm{M}$, MS
14.00-14.50	LMS	54.25-58.2	${ }_{\text {SAT, }, ~, ~ I S, ~ M, ~ S, ~ R L ~}^{\text {a }}$
14.25-14.30	FS, RN, F, M, S	58.2-59.0	SAT, ${ }_{\text {S }}$
14.30-14.40	F, FS, M, RNS	59.0 .64 .0	${ }_{\text {F, IS, M, RL }}$
14.40-14.47	F, FS, M, S	61.0.61.5	ISM
14.47-14.50	F, FS, M, RA	64.0.65.0	SAT,
14.50-14.80	F, FS, M, S	65.0.66.0	SAT, S, F, M
14.80-15.35	F, M, S	66.0 .71 .0	M, MS, RN, R
15.35-15.40	RA, SAT, S	${ }^{71.0 .74 .0}$	F,FS, M, MS
${ }^{15.40-15.70}$	${ }_{\text {AR }}$	740.77.5	F, FS, M
	${ }_{\text {RL }}^{\text {RL }}$	75.5.76.0	A, As
${ }^{10.60 .1 .1 .10}$	RL, ${ }^{\text {r }}$	76.0.81.0	RL, A, AS
17.20-17.30	RL, SAT, S	${ }_{84} 8.0 .86 .0$	
17.30-17.70	FS, RL	${ }_{86.0 .92 .0}$	TRAS
17.30-18.10	BSL	${ }_{92.0 .95 .0}$	S, M, RL
17.70-18.10	F, FS, M	95.0-100.0	M, MS, RN, RNS, RL
18.10-18.60	F, FS, M	100-102	SAT, F, M, S
18.60-18.80	F, FS, M, SAT, S	102-105	F, FS, M
${ }^{18.880-19.70}$	$\stackrel{\text { FFs, }}{ }$	${ }^{105-116}$	SAT, RA, S
${ }^{19.9002020 .20}$	${ }_{\text {FSS }}$ FSS	${ }^{1166-126}$	$\stackrel{\text { SAT, F, IS, M, S }}{ }$
${ }^{20.200221 .20}$	${ }_{\text {STS, }}$		
${ }_{\text {21a }}^{21.40-2.22 .00}$	${ }_{\text {F, M }}^{\text {S }}$,	$1126-134$ 134.142	$\stackrel{\text { F,IS, M, RL }}{\text { M M }}$, RN, RNS , RL
22.00-22.21	F, M	142.144	${ }_{\text {A, AS }}$, ${ }^{\text {den }}$
22.21-22.50	SAT, F, M, RA, S	$1441-149$	R
22.50-22.55	F, M	149-150	F, FS, M
${ }^{22.55-23.00}$	$\stackrel{\text { F,IS, M }}{ }$	150-151	SA
${ }^{23.30-23.55}$	$\stackrel{\text { F,IS, M }}{ }$	${ }^{151-164}$	F, FS, M
${ }^{23.555-23.60}$	F, M	164-168	SAT,
23.60-24.00	SAT, RA, S	${ }^{168-170}$	F, M
24.00-24.05	${ }_{\text {A A A }}$ AS	170-174.5	F, IS, M
24.00-2.4.25		1744.5-176.5	SAT, F, IS, M, S
${ }_{\text {24, }}^{24.25-25.25}$	${ }_{\text {RN }}^{\text {RL, A, SAT }}$	(176.5-182.0	$\stackrel{\text { F,IS, M }}{ }$
${ }_{\text {25, 25-27.00 }}$	F, M, SAT, SFTS	${ }^{1885-185}$	
${ }^{27.00-27.50}$	F, M, SAT	190-200	M, MS, RN, RNS.
27,.-29.5 2,	$\stackrel{\text { FF, }}{\text { FS, MS }}$	${ }_{200202}^{2020}$	S
- ${ }_{\text {a }}$	$\underset{\text { FS, MS, SFTS }}{\text { F/, }}$		$\stackrel{\text { FFS, }}{\text { F/ }}$
311.0.31.3	F, M, SFTS, S	${ }_{231-235}$	F. FS, M, RL
31.3.31.5	SAT, RA, S	${ }^{235-238}$	SAT, F, FF, M, S
${ }^{31.5-311.8}$	SAT, RA, S, F, M	$238-241$	F, FS, M, RL
31.8-32.0	RN,	${ }^{241-248}$	RL, A, AS
${ }_{\text {cole }}^{32.0 .3 .2 .3}$	${ }_{\text {IS }}^{\text {IS RN, RN, }}$	244-246 24-20	${ }_{\text {ISM }}$
			${ }_{\text {A, AS }}$ SAT ${ }^{\text {S }}$
33,4.34.2	RL	${ }_{252}^{25-265}$	M, MS, RN, RNS
	${ }_{\text {MA, }}^{\text {RLL }}$, ${ }_{\text {d }}$	$265-275$	F, FS, M, RA

ing from satelites remain substantially unchanged. $11.7-12.5 \mathrm{GHz}$ is completely 40 channels within this band were assigned at the 1977 satellite braodcasting conference - see January 1979 issue, p.41). However, the original 4143 GHz satellite broadcasting band has now been shifted slightly downwards to give better clearance for various radio astronomy frequencies around 43 GHz which are used for spectral observations of silicon monoxide. Furthermore he band is now shared with three other "permitted" basis) and fixed and mobile communications (secondary basis). The third band for satellite broadcasting, limits, blit, whereas in the 1977 mits, but, whereas in the Radio Regulations it was exclusively for this use, it is is, now shared with primary fixed, mobile and terrestrial broadcasting services. (Although there is a footnote
saying that these three must not cause harmful interference to broadcasting satellites to which frequencies are assigned.)

What is completely new in relation to broadcasting satellites is the set of requencies chosen for the uplinks them - the communication channels thich convey the programme silites' transmitters. These wer not planned at the 1977 space con ference. At WARC 79 a wide range proposals came from different coun proposal was $21.2-22 \mathrm{GHz}$ (which the Scandinavians objected to because of ain attenuation at their norther latitudes), while the Indian proposa was $14.5-15.35 \mathrm{GHz}$ (which the USA and K objected to because it conflicte cluding military systems). In the end world-wide compromise was found which did not conflict too seriously with the other services sharing allocation with it (see list), and this was 17.3
18.1 GHz . At the same time the door was eft open for two other bands to be used in particular areas. Outside of Europ and for Malta, $14-14.8 \mathrm{GHz}$ may be used for the uplinks, with the lower en with other networks in the fixed satellite service". And in Region 1, the uplinks may, as mentioned above, use the new $10.7-11.7 \mathrm{GHz}$ allocation which is otherwise intended for communica-

An unusual type of satellite uplink Aneered by the BA in Britain, is aroad designed for sending television outsid broadcasts from any location straigh p to a communications satellite (se picture in January issue, p. 42). It has already been used, in fact, with the OTS
satellite. Largely through the IBA's initiative, supported by the BBC, a decision was made at WARC 79 to allocate
a band of frequencies to this type of land mobile-satellite service, as it is called, at
$14-14.5 \mathrm{GHz}$ on a secondary basis world-wide. In Europe this type of outthrough the Eurovision transponders of the ECS satellite, which is due to be launched at the end of 1981 (see December 1978 issue, p. 63, for details). eur satellites have received an allocation at $10.45-10.5 \mathrm{GHz}$. This is worldwide and on a secondary basis, the primary service in this band being, of course, 3 cm radar. The amateur and
amateur satellite bands between 24 and 24.25 GHz remain unchanged. There is a new amateur and amateur satellite allocation at $47-47.2 \mathrm{GHz}$ (6 mm), two more at $75.5-76 \mathrm{GHz}$ (primary) and 76 81 GHz (secondary, sharing with radar), wavelength region at $142-144 \mathrm{GHz}$ (primary) and $144-149 \mathrm{GHz}$ (secondary). The highest amateur bands of all to be allocated are in the previously unoc-
cupied region $240-250 \mathrm{GHz}$, and are at $241-248 \mathrm{GHz}$ (on a secondary basis) and $248-250 \mathrm{GHz}$ (primary basis), both including a satellite service. These are all
somewhat different from the UK prosomewhat different from the UK proposals for the amateur service taken to
Geneva by the Home Office (December 1979 issue, p. 62).
Three new bands have been designated for ISM (industrial, scientific, medical) applications. Two significant factors in these allocations are (a) that
the bands are in harmonic relationship and (b) that the use of the bands is subject to special authorization by the government of the country concerned in agreement with other administrations whose radiocommunication serRadiolocation allocat
made in two distinct groups - in the absorption bands for shorter range systems with a high potential for
frequency re-use, and in the radio frequency re-use, and in the radio
"windows" between those bands for longer-range systems.
Additional spectrum has been made Additional spectrum has been made
available to radio astronomy, with available to radio astronomy, with
recognition of the nature of the observations, e.g. spectral lines. The requirement to observe emissions from extraterrestrial sources has been accepted
and frequency bands are identified where these observations are likely to It will be
It will be noticed that numerous allo-
cations for the fixed and mobile communication services run right through the list, up to the very highest frequencies. According to one Home Office official, this was the result of certain
countries being "obsessed" with making their mark on the frequency plan, regardless of whether these requencies could actually be used or not with current available technology. Acknowledgment. We are indebted to
Dr G. J. Phillips, BBC Research Department, for a great deal of help in the preparation of this article.

BOORS

Radio and Electronic Laboratory Handbook,
by M. G. Scroggie is probably far to well by M. G. Scroggie, is probably far too well-
known and respected to need much introduction. It has changed considerably, however, in the forty years since it was first
published, having been continually revised to keep pace with accelerating change in the industry. It is now in its ninth edition, this
one updated largely one updated largely by G. G. Johnstone.
The plan of the book remains the same, information on measuring equipment being concentrated in the first half. Measuring
techniques take up most of the econd half techniques take up most of the second half of
the book, and the already large reference section is extended for this edition: the piece on filter design is particularly useful.
Throughout the text, references to the liter Throughout the text, references to the liter-
ature are lavishly scattered. The book is ature ablished in hard back at $£ 17.99$ by Newnes-
put Butterworths, and contains 592 pages.
Frequency Engineering in Mobile Radio Bands, by W. M. Pannell. Continuous expan--
sion of land mobile radio communication makes it essential to plan allocations inside a frequency band is a low level and that the
ference is kept to a lo spectrum is used to its fullest possible extent. stages of frequency planning, and is in two sections, the first dealing with general proceduress and the second of a more specific
nature. Mr Pannell has many years nature. Mr Pannell has many years of ex-
perience in the mobile radio field, and was responsible for the Pannell Report on future, spectrum requirements for mobiles in the
UK. Published in hard back, at $£ 25.00$ by UK. Published in hard back, a£ $£ 25.00$ bye,
Granta Technical Editions, Hargrave Lodge, 7 Brooklands Avenue, Cambridge.
Audio Equipment Tests, by Gordon J. King, is Audio Equipment Tests, by Gordon J. King, is
intended to demonstrate the performance testing of high-fidelity sound equipment to technicians, dealers and those users who
take an interest in the technicalities of their take an interest in the technicailites of theio
equipment. Each component of an audio chain from f.m. tuner (no a.m.) to loud-
speaker is allotted a number of test procedspeaker is allotted a number of test proced
ures with a list of equipment needed diagram of connexions, the procedure to follow and a few clarifying remarks. The author has a long experience of writing on
hiffi subjects for the audio magazines, and of reviewing audio equipment. The book is published at $£ 6.50$ by Newnes-Butterworths, Borough Green, Sevenoaks, Kent, and h
158 pages.

BBC Handbook 1980 is now on sale. It Imilar in format to earlier editions an information on technical, artistic, commercial and political subjects in the broadcasting feld. It is published in limp back at $£ 3.00$ on
the BBC, 35 Marylebone High Street, London WIM 4AA.
The Einstein Myth and the Ives papers is, not surprisingly, an attack on Einstein's theories
of relativity and a substitution of the ideas opounded by Herbert E. Ives of Bell Labs About half of this substantial book is a series
of papers and a lecture by Ives, the rest one of the editors, Dean Turner, puts the case or a universal 'nowness' or simultaneity. He argues for the reality of space and time, eliminating, among other concepts
relativity, the Twins Paradox. Papers and notes by other scientists take up the rest of he book.
In essence, Ives replaces Einstein's prinaws must apply to (which says that physical motion, including to systems in any kind of rcted theory in which gravitational and inetic energy are equivalent. The book is easy to read, and seems to be aimed as much at the layman as at the physicist, only in
isolated places becoming mathematical, and even then merely algebraic. The book is in hard back, is A4 sized, contains 447 pages and is published at 22 dollars 50 cents by The
Devin-Adair Company, Old Greenwich Devin-Adair Company,
Connecticut 06870, USA.

Radio Enters the Home is a reprint, by Vestal ress, of the gues, it contains full descriptions and illustrations of contemporary wireless sets and ost usefully, a large number of circu
diagrams of 1922 commercial receivers. The first few pages demonstrate the novelty of 'wireless', being illustrated with photographs groups of people staring fascinated a materialization, and of malevolent infant eing tranquillized by a bedtime story. The sets described range from the Model
ER-753 crystal receiver at 18 dollars to the Aeriola Grand valve detector, amplifier and loudspeaker model, complete with battery,
charger, aerial and stand and covering 150 550 m at a cost of 409 dollars.
In 1922, the catalogue cost 35 cents: now, it published by The Vestal Press, 320 N
Jensen Road; PO Box 97 , Vestal, NY 13850, ensen Road, PO Box 97, Vestal, , NY 1380
USA at 12 dollars 50 cents, plus postage.

Entertainment Year Book

 What used to be simply the Hi Fi Year Book has now been extended in scope to includereference material on colour television sets reference matronic organs, video cassette recorders
end
and television and television games. This is in addition to
the familiar illustrated information on cur rent audio products, including descriptions technical data, prices (where available) and suppliers names, addresses and telephone
numbers. There are four survey articles on various audio topics. The 1980 "Hi Fi Year Book \& Home Entertainment" contains over
580 pages and can be obtained from booksellers at $£ 3.75$. Alternatively it can be obtained directly from the publishers, IPC Business Press Ltd, by writing to the Genera
Sales Manager Room CP34, Dorset House tand Manager, Room CP34, Dorset House, ding $£ 4.25$ which includes packing and pos

the batteries need replacing and to show if the input is too high.

To measure an unknown value, simply
select the correct function on the large tary switch and take the reading. However, should you want to take com burative readings on the same range, a'freeze button is incorporated which locks the range.

Our new auto-ranging digital multimeter won't take a second
 The trouble with most auto-ranging

DMM's is that they are comparatively slow DMM's is that they are comparatively slow to respond. Which let's face it rather defeats the object of an auto-ranging facility

Avo have changed all that with the new Avo DA117 which has a response time of less than a recos Indeed ovenont ranges. Indeed, evenont a.c. range the DA117 will

The Avo DA117 has many other fine features

A large easy to $31 / 2$ digit liquid crystal display with automatic
$-180.5 \mathrm{mv}$
 indication of decimal point and the unit of measurement-so reading errors are virtually eliminated. There is automatic polarity indication for d.c. measurement, visual displays for when

There is also a range-up or range-down facility incorporated for manual range selection So now you have a choice of digital multimeters from Avo. The DA116-for accurate manual operation; and th DAme which does the
contactyour usual distributor for further Avo distributor for furth details, or call us direct.

Avo Limited,
Archcliffe Road, Dover Kent CT17 9EN.
Tel:0304 202620. Telex: 96283 wW - 10 FOR FURTHER DETALIS
You'll never meet a better meter
-.It was once told as a good joke upon a mathematician that the poor upon a mathematician that the
man went mad and mistook his symbols for realities; as M for the
moon and S for the sun.
Oliver Heaviside, Electromagnetic
Theory, 1893, volume 1, page 133:
. . . the universe appears to have been designed by a pure mathematician."
Sir James Jeans, The Mysterious UniSir James Jeans,
verse, 1931, page 115.

Faraday's Law of Induction, $v=-\mathrm{d} \phi / \mathrm{d} t$ seems to imply:
A causality relationship; the rate of hange of magnetic flux through a sur face causes a voltage around the circumference of the surface. A reluctance, or resistance to the the minus sign.
A careful analysis of this one equation will give an insight into the bogus naure of contemporary mathematical perations in electromagnetic theory First let us discuss the minus sign, Law reluctance, or resistance, to the change $d \phi / d t$. We shall see that a minus ign can occur in an equation when n causality can be involved.
Consider a high speed (125) railway train with sloping front passing an observer. As the front face passes, the observer will see a negative slope ∂h x as shown below. However, if th

observer had watched the even through a narrow slit in a fence, he shown here.

It would be absurd to suggest there was a causality relationship bet ween $\partial h / \partial x$ and $\partial h / \partial t$. They are. both passage of the train. Since Newton, it is accepted that a body continues in its
state of uniform motion without a continuing cause, or push. (However, this principle is taking a long time to be applied to electromagnetic waves. $)^{1,2}$ Now we regard the velocity of the train $\partial x / \partial t$ as positive. This creates an anomaly when we want to write the equation

$$
\frac{\partial h}{\partial x} \cdot \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\partial h}{\partial t}
$$

(1)
because the left hand side product is negative when the right hand side is positive, as in the This kind of
gnored when Newton's or anomaly, is sidered. It is reasonable to do so, because Newton's Laws are close to common sense and the obvious. Common from creeping into a Newtonian theoretical framework, even though the mathematical formulation of Newton's Laws has always been slovenly in this slovenly aspect is the use of the $=$ sign for numerous different, mutually contradictory meanings.)
Maxwell's Equations are not in the ame class. Common sense will not save us from absurdity and nonsense if our wrong.
Let us consider an electromagnetic wave front advancing at the speed o ght. When the step (or more accu-

$\partial H / \partial x$ is negative. However, $\partial H / \partial t$ fo estep is positive. To get the algebra he step is positive. To get che algebra

$$
\begin{equation*}
\frac{\partial H}{\partial x} \cdot \frac{\mathrm{~d} x}{\mathrm{dt}}=-\frac{\partial H}{\partial \mathrm{t}} \tag{2}
\end{equation*}
$$

However no one would propose that the minus sign indicated a causality relationship between $\partial H / \partial x$ and $\partial H / \partial t$. The last equation never appears in the ext boo Even the brilliant philosopher Ernst Mach failed to notice this anomaly.
terms is first converted into a function of E according to the formula
$\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}$
$\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t}$
(3)
$\frac{\partial H}{\partial x}=-\frac{\partial D}{\partial t}$
The text books say the "solution" to this pair of equations is a sine wave! See references 3 to 7 . (In tact, almost anyAt this stage, the whole subject starts to look sophisticated and profound. Really it is neither. The minus signs have no signicance, as we have serely to suppress μ and ϵ using the formula

$$
\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}
$$

In fact, the last two equations (3), (4) are meaningless. If the front end of the high speed train were pointed, sloping
out sideways as well as upwards, and w were the term given to width (as H stands for height), exactly the same pair of equations could be constructed.

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=-\mu \frac{\partial H}{\partial t} \\
& \frac{\partial H}{\partial x}=-\epsilon \frac{\partial w}{\partial t}
\end{aligned}
$$

As with e-m theory, we could conclude with equal validity that a train's height (and width) must vary sinusoidally along its length, making our trains look like the Loch Ness monster, or more accurately, iike
as shown here.

00000000000 It is shocking that this nonsense has survived for a century at the core of subject as crucial as electromagnetic theory. We see now that mathematical making the subject more rigorous, has the mathematicians are incompetent hide their incompetence and confuse others by conjuring up nonsensical, interrelated formulae.
When Hertz established that electromagnetic waves existed, Maxwell's
equations should have been reexamined, and the large rubbish element removed. Instead physically ignorant mathematicians took over, piling garbage on garbage, frightening.
away those with real insight into the away those with real insight into
subject - the latter-day Faradays. Those who try to build extensions, additions to, the House of Newton should not assume that since the foundations were good enough for Newton's to support their own more complex constuctions. Minkowski's failure to re-examine the foundations of Newton, in particular his assumption that velocity is positive and the passage of
time is positive, makes his constructions useless in the same way as Maxwell's equations are useless.

In the Minkowski sense ${ }^{8}$ time really lows from (and our tock, not, as he ascending sequence of numbers, think) from $-\infty$ to $+\infty$. Velocity, being th gaining of distance in return for the loss of time, is negative. This points to a fundamental difference between space
and time, and means that the "spaceand time, and means that the "space-
time continuum" as Minkowski formulated it is bogus. At best, we see his pronouncements as oracular, similar to the answer that Delphos gave when being asked about the sex of an unborn well be interpreted as true, but really it has no content.
Einstein failed to consider the problem of the sign of time and of velocity way through the mass of mathematical garbage surrounding electromagnetic theory.

References

1. Wirelesss World July 1979, page 72 .
2. I. Catt et. al., Digital Electronic Desi 2, C.A.M. Publishing, 1979, page 248,319 .
page 268, eqns. (12.5.1), (12.5.2).
3. A. F. Kip, Fundamentals of Electricity an
Magnetism. McGraw-Hill, 1962, page 321 , 4. A. F. Kip, Fundamentals of Electricity and
Magnetism, McGraw-Hill, 1962, page 321,
eqns. (12.19), (12.20). eqns. (12.19), (12.20). 55. E. G. Cullwick, Electromagnetism and
Relativity, Longmans, 1959, page 81, eqn. 6(2).
4. S. A. Schelkunoff, Electromagnetic Waves, 6. S. A. Schelkunoff, Electromagnetic Waves,
D. Van Nostrand, 1943 , page 39 , eqn. (10-1). 7. Wireless World, August 1979, page 44, eqns. (i) and (ii). 8. A. Einstein etc., Principles of Relativity,
'Dover, page 76 .
5. ed. P. A. Schilpp, Albert Einstein Dover, page 76. Schilp, Albert Einstein,
6. ed. P. A.
Philosopher-Scientist, Library of Living Philosopher-Scientist, Library of Living
Philosophers, 1949, page 17, ". . the Philosophers, 1949, page 17, ". the
approach to more profound knowapproach
lege...",
7. ibid, page 63.
8. ibid, page 63.
9. I. Catt, Computer Worship, Pitman, 1973, page 71. .
10. I. Catt, "The rise and fall of bodies of 12. . Catt, "The rise and fall of bodies of
knowledge", The Information Scientist,
12(4), Dec. 1978, pp. 137-144 12(4), Dec. 1978, pp. 137-144.

This article is taken from "Electromag netic Theory" published by C.A.M. Publis
hing, 17 King Harry Lane, St. Albans.

Impedance mismatching

continued from page 59

Thus, for maximum power transfer eficiency from the Norton source, the oad must be such that $R_{\mathrm{L}} / R_{\mathrm{s}} \rightarrow 0$ (the opposite of the voltage source case). A similar set of arguments to those used expression for η is meaningless unless the actual circuit is a simple curren ource with source impedance.
Despite the fact that Thevenin calculation directly of the not allow efficiency, it is perfectly true that to attain maximum power transfer into a load, the load impedance should be chosen to match the Thevenin or Norsame) but to say that this means 50% of
the power from the source is lost in the source resistance is in general not true often the power loss in the source re-

Despite the cautions outlined in this paper the notion of transfer efficiency is
not without its uses, since a number of

Fig. 4. Current equivalent to Fig. 1.
Fig. 5. Amplifier inter-stage coupling behaves as current source, as in Fig. 4.

frequently encountered circuits behave as true Thevenin or Norton circuits; for example, the common emitter amplifier shown in Fig. 5. Neglecting the biasresistance loading effects and assuming that all capacitors are short circuits, the mproximately by

$$
\begin{array}{l|l}
\text { approximately by } & \begin{array}{l}
\text { types have tolerated } 5 \mathrm{~V} \text { pk-pk with a } 13 \\
\text { volt supply and a } \mathrm{V}_{\mathrm{o}} \text { o. } 7.5 \text { volts. } \\
\text { The radar sensitivity is limited en- }
\end{array} \\
A_{\mathrm{v}}=\frac{v_{0}}{v_{\mathrm{i}}}\left(\frac{-R_{\mathrm{c} 2}}{r_{\mathrm{e} 2}}\right) \cdot\left(\frac{-R_{\mathrm{cc}} \beta_{2} r_{\mathrm{e} 2}}{R_{\mathrm{cl} 1}+\beta_{2} r_{\mathrm{e} 2}}\right) \cdot\left(\frac{1}{r_{\mathrm{el} 1}}\right) &
\end{array}
$$

$$
A_{v}=\left(\frac{R_{\mathrm{c} 2}}{r_{\mathrm{e} 1}}\right)\left(\frac{\beta_{2}}{1+\frac{\beta_{2} r_{\mathrm{e} 2}}{R_{\mathrm{c} 1}}}\right)
$$

$$
A_{\mathrm{vmax}} \sim\left(\frac{R_{\mathrm{c} 2}}{r_{\mathrm{e} 1}} \cdot \beta_{2}\right)
$$

which occurs when the input impedance of Tr_{2} is much less than the collector resistance of Tr_{1}, i.e. $\beta_{2} r_{22} \ll R_{\text {cl }}$. The output of Tr_{1} is a current source of
impedance $R_{\text {cl }}$ and the Norton transfer impedance $R_{\text {cl }}$ and the Norton transfer that $R_{\mathrm{L}} / R \rightarrow 0$ for good transfer efficiency, i.e. $\beta_{2} r_{\text {e2 }} / R_{\mathrm{c} 1} \ll 1$.
In conclusion, I would stress that extreme care should be taken to interpret the components of a Thevenin or
Norton equivalent circuit correctly pecially in deriving expressions for losses in power transfer.

Microwave intruder detector - 2
Design with good interference rejection and noise monitoring
by K. Holford, C.Eng., Philips Research Laboratories

This design provides a simple but

 effective circuit which uses a cycle being triggered by short movements or pulses. The circuit has excellent interference rejecting properties. A noise monitoring circuit is described that allows the alarm to be set up false-alarm probabilityThe complete intruder alarm circuit designed for use with the Mullard CL8960 module is shown in Fig. 9. It requires a nominal 12 volt power supply switch-on but in general less than 200 mA unless a high current relay is used (about 160 mA plus the relay). This supply can be a car battery with the usual voltage variation during charging voltage is safely 11 volts with a 7.5 volt V_{g} (or 10.5 volts with a 7.0 volt setting). With a selected 748 as in the text, this can be reduced by up to another 0.5 volts. However, with supply ripple, should be avoided.
Supply ripple within these restrictions can be up to 1 V pk-pk .without affecting performance and some proto-
tirely by that of the microwave module, afterwards just called a module, rather than the circuit design. However, to the use of short screened leads at the amplifier input, because of the gain the circuit has to 50 Hz and 100 Hz signals. Two 741 op-amps are used as the main Doppler amplifier. These can be a complete circuit uses one 1.5 watt power transistor, four small transistors and three cheap i.cs. Much of the circuit components.
The microwave module requires some cautionary remarks because the small electrical prodertions so as to respond to the 10.687 GHz frequency. If the mixer, or its lead to the amplifier, is object which a measurieng grounded to the module metalwork it could be destroyed by static discharge. If a shorting in situ until connections have been made.
Fig. 9. Components: Tr $_{1}$, BC557, Tr $_{3}$ Tr $_{4}, B C 547$ or BC107, Tr_{5}, BC 135 or
$B F Y 51$, with $50^{\circ} \mathrm{C} / W$ fin. Capacitor Bead tanth $50^{\circ} \mathrm{C} / W$ fin. Capacitor $2 \mu A, C_{7} 1_{\mu} A$ at $t_{\text {im }}$ Resistors: all 0.1 W .

Connect the module to the amplifier circuit as follows. Use a screened inpu first. The braid is connected to 0 V only the amplifier end. Keep exposed unscreened ends down to about 12 mm Next make the amplifier 0 V connectio o the module 0 V metalwork. Then clip soldering iron bit and the module metalwork to equalize potentials. If the iron is not earthed, make a second lead between the module and earth. The lead from the amplif to the mixer should now be touched on the module metalwork just prior to connection. Maintain one finger on the metalwork while the joint is being made to discharge and prevent Remove any shorting clip while the metalwork is being contacted and after making the connections.
Should it be necessary to measure the mixer direct voltage while it is working while the leads are being handled; but make the 0 V connection first. To ensure no static, fit a $10 \mathrm{k} \Omega$ resistor to the end of the measuring lead and touch on the metalwork just prior to the measurement. Mixer failure is evident by loss of
sensitivity and by little or no direct voltage when passing a direct current, such as the $40 \mu \mathrm{~A}$ bias current.

Circuit description
The circuit supplies about $40 \mu \mathrm{~A}$ of bias will be about 300 mV with no microwave energy and ideally about half this with the optimum mixer power. However, voltages from about 90 to cause a 1.5 dB loss in signatill only ratio at the extremes but require 5 dB more gain for the same signal at the upper bias point. Observe the precauions mentioned when measuring mixer voltage to avoid static discharge
damage; nothing must inadvertently touch the live mixer-to-amplifier lead. The mixer power for the CL8960 is obtained by leakage across the two waveguides outside the module. Thus upward and have no obstruction in front for at least 300 mm . Covering the module requires special material (see data sheet) which is near-transparent to microwaves.
A hand move
A hand moved slowly at about 150 mm bias by a few tens of mV and confirm that microwaves are present and that the mixer is probably good. A biás volage of 50 mV or less together with 5 mV mixer
A 2 mm screw can be used to reflect power and to either set the correct bias or, at another spaced distance, cancel an over-reflection from a covering to provided the reflection is not excessive such as causing the voltage to be more han about 100 mV negative without the crew. The best position for this screw is
*The intended optimum mixer power will occur naturally if the module is bolted to a
$160 \times 43 \mathrm{~mm}$ 'aperture in a $1 / 16$ in plate, such he side of a box, provided the plate is
sandwiched between the front shroud, Fig. 10 and the rest of the module. The shroud and module are supplied togethe
module, Fig. 10, at a position in line with the centre web, such as between 4 and interfact from the shroud-to-module cover).
The supply voltage to the amplifiers is also used for the Gunn microwave lie between 7.25 and 7.75 V . Lower voltages than 7.0 V may not allow the oscillator to work properly, although will cause no damage. Voltages above just a few seconds. Thus the 7.5 V be should be checked before connection, Using a 7.5 V zener diode with IC_{3} will usually produce a voltage within the above spread. Lower volages can be link AF with a second resistor of higher value across FB. For instance a $10 \mathrm{k} \Omega$ resistor will raise the voltage by about 10\%. No adjustment exists for too high a voltage other than changing the diode. in which case the resistor FB will lie between about 3.9 and $18 \mathrm{k} \Omega$
The module produces audio frequencies in response to radial movement, the Movement being 32 Hz per 1 mile $/$. produce a much the 140° beam wil even zero at perfect constant radius with no change in target reflection properties during the movement. Range 0 metres or could increased and R_{4} decreased. But a high

fig. 10. Mixer power can be adjusted by fitting a 2 mm screw in shroud. noise indicator on board for on page 81 with location diagram on page 84.
sensitivity has false alarm risk due to Signals from the mo
in via C_{1} and amplified produce a clipped "square" sinewave of 4 to 5 V pk-pk amplitude out of IC_{2} or less at long range. This drives the fol and is set to alarm when the voltage across C_{7} reaches about four volts. This will take about 600 mm of travel with C_{7} of $47 \mu \mathrm{~F}$ or 300 mm with $25 \mu \mathrm{~F}$. Capacitor C_{6} is used as a bucket to discharge into occurs for each 14 mm of radial distance change towards or away from the radar The larger C_{7} the greater one single movement distance can be before an protection against an alarm from odd spurious pulses and short single events. The result of movement is stored in C prevent an approach by a series of hort movements. The memory is dis alarm by odd spurious events. C_{7} will deally have a leakage current less than R_{12} for a long storage time. At four volts ($\mu \mathrm{A}$ per $1 \mathrm{M} \Omega$) Tr_{2} and Tr_{3} will conduct and Tr_{4} will be turned off thus setting The floating changernal alarm. intended to be used for a more powerful external relay operating an audible warning device such as a bell or door to preserve battery life current typ to preserve battery life during mains observed. If this is not required a more powerful relay may be fitted with a coil current up to 100 mA . A diode across the protects the relay is used with this already fitted, the coil must be connected the correct way round, otherwise both the diode and the transistor may be destroyed. A shorted can be burnt away. Sensitivity is se
be a log.law potentiometer for should control and with the, low resistance end the last to be shorted. A standard \log The d.c. working point of IC and IC is set by 2% tolerance resistors R_{2} and R_{3}. The design centre voltage from IC and IC is is 3.9 to 4.4 V with a 7.5 V line and roughly in proportion for other vol infrequently occur due to end-of-spread leakage current in C_{2} and C_{4} and if this happens a selected component should be used. An inaccurate d.c. level wil limit the output voltage swing from IC_{2}.
Leakage has limited the value of these capacitors and they would otherwis have been increased by a factor two.

WIRELES WOPLD MARCH 1980

Setting the sensitivity Setting the sensitivity can be done using an circuit of Fig but is noise monitor circionmended The alarm starts to operate when the signal output from IC reaches 1.5 V pk-pk and 2.0 V pk -pk will usually lead to an alarm. The sensitivity should be set for no more than 0.5 V $\mathrm{pk}-\mathrm{pk}$ from IC_{2} to leave a margin for
unforeseen events. This noise level will be entirely due to extraneous disturbance as the noise level of the alarm itself in a perfectly "quiet" room with the times less. than this
Setting the sensitivity without either an oscilloscope or the circuit of Fig. 11 is more difficult if it is important that a false alarm should not occur. By shunting R_{12} with $100 \mathrm{k} \Omega$ the memory can be
shortened and an indicator l.e.d. can be fitted to the relay contacts and a walkabout test carried out. Fitting the $100 \mathrm{k} \Omega$ will shorten the memory time to five seconds to 37% of previous movement stored in C_{7}. However, to be sure that with the $100 \mathrm{k} \Omega$ removed the gain of the amplifiers really needs to be increased by 3 or 4 times or more as a test. This could be done by reducing R_{4} to, say, $1 \mathrm{k} \Omega$ and increasing C_{2} to $22 \mu \mathrm{~F}$ to precautions must be taken to see that an alarm is not false due to the introduction of hum with long unscreened wires and that the leakage of the $22 \mu \mathrm{~F}$ go above 5 V . It is much better, and there will be more reliability, to build the noise monitoring circuit given. This will also monitor the MID environment and give ficient.

Fig. 11. Noise level monitor uses I.e.d. to ndicate when noise level exceeds safe procedure. Switch is shown in setting-up proced
mode.

For instance, with a lot of extraneou interference it may be necessary to from the alarm and reduce the value of R_{12}. Where the alarm is intended as an utomatic door opener the distance walked may be very short and the value Storage time is reduced with a reduce $\mathrm{C}_{\text {, but also }} \mathrm{R}_{\mathrm{b}}$ can be reduced. Thus th alues may be suited to the application With large values of C_{η}, so as to tolerate large single infrequent movemen hould be selected to be low so as to get the desired time of storage.

False alarms
The MID circuit should be wel creened from 50 Hz pick-up and prefer ably in a metal box with a good fitting
lid. There should be no mains trans former nearby to induce 50 Hz voltages. The alarm should not be used in the same room as fluorescent lamps while they are on as the gas in these ionizes at 00 Hz to become a fluctuating reflecto tures through which microwave energy can pass, will cause signals. These ap ertures can be screened with gauze of say, not more than 6 mm mesh size, an tested by placing the radar fairly close.
The alarm sensitivity should not b reater than necessary bearing in min that radar signals grow very quickly a range is shortened. The rate is fou times in voltage per range halving and
so if a target is detected occasionally at one range it will be detected most positively at half that range.
 lamps. Radar signals pass through glass, although weakened, and through dry plaster board. Any testing must include
walking outside windows. walking outside windows.

Short flapping movements can lead to 14 mm can give rise to one pulse into C and an extra pulse for each 14 mm approach and recede travel.
Movement across the
Movement across the beam has less.
effect than when radial and may he used to advantage in the siting of the radar.

Circuit construction

In constructing the circuit treat it as Screen the input lead and mount the circuit preferably inside a metal box with just the business end of the module protruding. Avoid earth loops and don't spread out the circuit. Insulate the box
from the circuit and connect to the 0 V line by only a single connection. Ideally the module metalwork would be insulated from the box, but if this is not so the module metalwork is already 0 V and no other 0 V connection should be made to the box
ferred, leave the power to earth, as preso as to be earthed via supply floating box. Preferably use the same and the earth the box as used for the 0 V connection inside the box. If both must have separate earth wires do nöt use the box as a conductor for 0 V , nor take the earths for the box and that of the power supply to two different ground points. associated with transistor connections because these high frequency devices can produce h.f. oscillation. In the case of Tr_{4} a capacitor of lnF is fitted across it and close to it to prevent this being lead from the regulator and IC_{3} is three separate leads to each part of the circuit to avoid possible earth loop problems. R_{2} and R_{3} which tolerance resistors point of the i.cs resistor tolerance is not critical and 5% or even 10% can be used if they must.
Transistor Tr_{5} dissipates about 1.5 watts and requires a small heatsink of fin of say $15 \times 25 \mathrm{~mm}$ or an area of printed board copper of say 12 mm square, and could have the transistor bolted to it. In each case use heatsink The microwave module can be obtained from RS Components who also send out a licence form with it. Unfortunately they do not deal with the public and it is necessary to find a shop them. The cost depends on the mark up put on by the shop. For single units a price of about $£ 33$ should be aimed at, as of September 1979. An alternative supplier might be found in one of the Tot-

Fig. 12. To give a limited alarm time, say 2-5 min, use a 555 timer as suggested in Fig. 8, part 1, but with a diode and capacitor combination across the relay to preven retriggering.

nternal photograph of demonstration model shows circuit board using Fig. 9 circuit only
tenham Court Road shops. People forming themselves into groups may b and obtain tore dist v.a.t.

The open ends of the microwave module should preferably be covered to keep out dust which may eventually cover must not reflect aperectiable microwave power or this will upset the mixer working. A simple and effective covering is to sandwich a very thin polythene membrane between the he module, Fig 1 Ordinary plastic ba material is suitable; the thinner the better. A capacitor of about 10 nF Should be soldered across the Gunn connectio o the module metalwork to prevent supply lead due to the negative resist nce of the Gunn diode.
Microwave intruder alarms are re
quired to be licensed so that the Home Office is aware of their location should there be an interference problem with other equipment. A licence costs $£ 1.40$
and last for 5 years and is called a Telapproach Licence. Normally only finished equipment is approved as a production equipment. However, as the microwave module is set at the factory to meet. Home Office requirements, the
Home Office will issue a licence on the understanding that the frequencysetting screws on the module are not disturbed from their factory settings and the equipment is operated only indoors. When applying for a licence the
module should be described as the Mullard CL8960/H, the H signifying the use by a home constructor, as opposed to a professional manufacturer with frequency measuring equipment. The
address is, Radio Licence Department Home Office, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

WIRELESS WORID MARCH 1980
Provided that the frequency setting is not disturbed the possibility of inter remote. Some mutual interference with another alarm in the vicinity is a possibility where the two microwave frequencies drift through each other to produce a spurious signal. Where two stances it is normal practice to install as pairs having their frequencies staggered by about 5 MHz .

False alarm confidence indicator
The intruder alarm circuit of Fig. 9 seems to be about the simplest that can be produced and still achieve the standard considered necessary in a
microwave intruder alarm. But unless it can be readily set up to work as intended with a low false alarm risk, it is likely to remain a novelty. Thus some attempt should be made at providing a setting up and monitoring circuit for completeness.
Basically
amplifier with about five times voltage gain to follow the last amplifier of the previous circuit and which will show by means of an l.e.d. whether the noise of sensitivity, is too high to be reliable from a false alarm point of view. This would not only monitor the noise due to he alarm circuits themselves but als worked.
There are really two requirements One for a quick response for setting-up the installation, and a second which allows the equipment to be monitored to see that the noise level stays within
safe limits. The monitor should have an amplifier but ideally should also be followed by indentical bucket counting as in the main part of the MID circuit. Furthermore, the long-term monitor tays on once it is lit until rese manually with a push button.
A circuit with a two-way switch, S_{S}, is shown in Fig. 11 for these purposes. I asis and worked extremely well. The connections M1 to M4 go to the simi larly marked points on the MID Fig. 9 As shown the switch is in the setting-up mode and the values of R_{p} and C_{p} ar extinguish. When the switch is thrown these are increased to approximately $1 \mathrm{M} \Omega$ and $4.7 \mu \mathrm{~F}$, as in the main MID circuit. Also the capacitor discharg The l.e.d. then locks-on and the reset button has to be pressed to extinguis it. The lock-on mode may also be preferred for setting up, as this can then be one by one person, in which case S 820 k from ollector
Setting up the MID is now easy walking in the protected area. Turn the

83

COMPONENTS

Voltage rating of
16 V in practice.
sensitivity to maximum, set the monitor switch as shown and carry out tests by walking outside windows etc, thumping fore possible MID movement) and see if the l.e.d. can be made to indicate. If the l.e.d. indicates or the sensitivity is higher than needed, reduce the sen sitivity.
In the setting-up mode the circuit responds much faster than the main ime, which speeds the setting-up pro cess. Having established a safe sen-
sitivity setting, it remains to check that sitivity setting, it remains to check tha doing this there is no need to be too critical as signals increase in voltage by factor of four each time range is halved. Thus occasional detection at of that range.
It is a good idea to mount the l.e.d. utside the protected area, so that with he monitor switched to the long tim onstant, the safety factor can ected area. Any tendency to approach a risk situation will be latched in by the e.d. staying on until reset. In , case where the Min is set to soun an alarm for five minutes and stop if worth fitting a second latched l.e.d. by he side of the first to show that the main MID circuit has alarmed. This will help sort out the situation where th monitor $1 . e$. .. is latched. For instance,
was this due to an intruder or a noise problem? If the main MID indicator is out then it is most likely, though not ertain, that it is an interference pro lem to be aware of.
he case where the MID appears cover a safe setting but in fact is close to making the l.e.d. indicate and so a second attempt has to be made to get it correct; after perhaps one day seeing some two-stage gain control so that the alarm is first set up and then the gain is reduced even more to ensure a onceonly setting up. An alternative, well worth considering, is to give the monimode than in the monitor mode. Perhaps seven times for setting up and four as a monitor. The gain is $1+R_{\mathrm{m}} / R_{\mathrm{s}}$ and he reader can choose the value of R suit.
One can carry on increasing the omplexity of MID's almost inde nitely. For instance, a clock could be
 sion. But the above system in my opi
nion is the least that should be provided in any professional equipment. A grea advantage of such monitors is that it allows the MID to go on test for a few days without being connected to an arm bell.
or this type of there has been a need oscilloscope can be used to look at th oise level in a particular installation
where the roof may rise and fall in the wind, is much more difficult than be helped by a security house who know about the difficulty. So would a wind meter which turned down the sensitivity in a storm.

(1) RVir Voltmeter/Multimeter. A highly versatile instrument which, when used with its probe accessories, allows measurement of temperature, frequency, DC high voltage, RF signal voitage etc in addition to its standard readings of $D C$ and AC bandwidth to 1 MHz . Automatic polarity indicator
(2) RV9A Voltmeter, with fully automatic and manual selection of $100 \mu \mathrm{~V}-316 \mathrm{~V}$ AC and $10 \mathrm{~Hz}-10 \mathrm{MHz}$ Easy-to-read scale and illuminated range indicator. Doubles as a measuring amplifier, bandwidth $10 \mathrm{MHz} \pm 3 \mathrm{~dB}$, gain -50 to +60 dB in 12
(3) Stabilised DC Power Supply from model SN14 (0-20V DC/0-2A) or SN15 ($0-50 \mathrm{~V}$ DC/0-1A). Both offer high accuracy regulation with extremely low
(4) TG7. Alow-distortion RC oscillator for testing high-specification AF amplifiers. Provides both sine and square waves. Output adjustable by push-button in 10 dB steps.

WM2 Wow/Flutter meter. Professional standard instrument for record players and tape mechanisms. Separate fitters for wow and flutter measurement. (6) AM1. AF Monitor Watitmeter/AC Voltmeter. Measuring range $10 \mathrm{WW}-140 \mathrm{~W} / 4 \mathrm{~Hz}-500 \mathrm{kHz}$
A5. Attenuator for unstepped attenuation (4-60dB) of signal voltage. Effective Full details and prices of these and other high quality test instruments are Limited Eastbrook Road, Gloucester GI 47DE Telephone (0452) 2159
Bang\&Olufsen

Hog

Top marks in one clear sweep. be right-the SFG 606 with itscrisp frequency marker doesiust that. It sweeps up to 4 decades of frequency-bi - directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal for narrow band analysis. It provides sine, square or triangl outputs over the frequency range 0.01 Hz to 1 MHz

And with that beautifully sharp, fine line frequency marker
gives you accurate determination of spot frequency on the that gives you accurate determination of spot frequency on the
display, the SFG 606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the
Feedback 600 range. Send to
Feedback for literature today. Feedback Instruments Θ Limited

cleatroplan

Ro. Boxton. Herts. SG 88 SHH.
Tejecphone:
The new SFG606 passes even the testiest tester's test.

[^0]

As fast and as simple as that, for batch testing, laboratory use or instrument servicing.
Accuracy 0.25% over a wide measurement range With its companion CA4 jig unit, the B424 Meter forms an easy-to-use L, C and R omponent Test Station

wW - 120 FOR FURTHER details

Microelectronics and the Third World

An argument against labour intensive technology
for less developed countries
by S. Jacobsson Research Policy Institute, University of Lund, Sweden

Microelectronics based technologies are now spreading into economies with already high unemployment levels. After discussing the possible for employment in these countries, the author argues against the widespread view that the solution to the problems of the less developed countries lies in labour intensive
manufacturing. Human labour ha natural limitations and cannot match the abilities of the new electronic machines and the superior
technologies that result from them.
Concern about the effect of microelectronics on future employment is now strengthened by the fact that
microelectronic based technologies are being diffused into economies with already high unemployment levels. In Co-operation and Development) area the level of unemployment in the second half of the 1970s was the highest ever since the second world war ${ }^{1}$ and, more importantly, it stayed at a high
level also in the post-recessionary period of 1975-8. ${ }^{2}$. While this situation in the OECD area is serious enough to warrant more attention than is given to it today, it is nevertheless rather insignificant in comparison with that of
the less developed countries (LDCs). In the rest of this article I shall outline some possible effects of technical change induced by the diffusion of microelectronics on the employment situation in these economies of the employment structure in the development process has suggested that the manufacturing sector would gradually absorb the rural labour force
and transform the employment pattern in LDCs into something similar to that which prevails in the industrialized world of today. Table 1 gives a rather interesting perspective on this
hypothesis. (A similar table is found in hypothesis. (A similar table is found in basis of past trends, not even the yearly addition to the labour force has been absorbed by the expanding manufacturing sector in any of the countries. Korea, the jobs provided by the manufacturing sector were extremely. inadequate in relation to the number of
obs required as a result of only the growth of the labour force, not to menloned (The figure of 1 billion has beenmentioned by the ILO.)
Now it seems reasonable to a whether this inadequate employment generation potential will prevail also in the future and, if so, what implications
will it have. While there are several factors which may determine the answer to this question, e.g. rate of population growth and capital accumuation, we shall deal with only one facor, namely technical change, as this is
he one most strongly associated with the diffusion of microelectronics. The overwhelming majority of the world's technology is produced in the OECD area and there is nothing that.

Table I: Manufacturing and labour force in LDCs

he LDCs' technological dependence on What happens here is the future greatest relevance for the LDCs. In Table 2 we have reproduced dat on trends in manufacturing output and mployment in the 'EEC-five' countries The same trends exist also in Britai ee Clarke (1979). ${ }^{4}$).
The table reveals that in the postwa 960 s and in particular since the early bas, there has been a strong down or a given rate of chment generatio While the data covers only the output While the data covers only the period up continued also in the post-recession period. Thus, the manufacturing outpu did not only recover but increased afte 1975, while manuacturing employme has fallen in absolute numbers in most Whileuntries.
put versurt of the change in labour put versus output can be explained by a structural shift of relatively labou intensive processes to the LDCs, for magnitude of the change strongly suggests that the figures reflect an in tensified process of labour saving tech nical change, that is, a jobless growth ${ }^{1}$ This trend is important for LDCs for two sonable to suggest that the LCDs ex perience a time lag in the vintage of their technologies. This implies that the recent strong labour saving bias has not yet been fully transplanted to the LDC Secondly, and most importantly, the
trends reflected in Table 2 will most likely continue, and perhaps in an intensified way by the diffusion o icroelectronics into industry. The important implication of this is that the absorptive potential of the manufac turing sector will decline even further in he future.
Before elaborating on the implic ns of this stating on the implica examine the very widespread sugges tion that it is possible to reverse thes rends and develop economicall efficient labour intensive technologies on the scale needed,* i.e. technologies
which are deemed to be more 'appropriate' in labour abundant economies. This I believe is wrong, since the basis for the proposal that labour intensive echnologies can be developed on

WIRELESS WORLD MARCH 1980
large scale is the neoclassical econom-
ist's conceptualization of alternative ist's conceptualization of alternative
technologies in terms of different quantities of capital and labour. I would instead suggest that there are extremely important qualitative differences between the two factors of production. To social scientist who pointed out the qualitative differences between capital and labour was Marx. The distinctive
feature of what he called large scale feature of what he called large scale teristics of the worker and his physical limitations did not constitute a limiting
factor in the design of the production factor in the design of the production processes. In line with his analysis, it is simple to argue that the physical pro-
perties of labour are quite different from those of a machine. In relation to a machine a person is first of all variable, which implies uneven quality; secondly he is weak, which has obvious implications; thirdly, he cannot achieve the
same precision, which is absolutely basic in any machine-making activity; fourthly, he cannot stand extreme heat, and heat is essential in key processes such as steel and chemical production;
fifthly he is slow, which implies that any industry which produces above a certain minimum level of output will use machines instead of people. From studying the history of technical change one may, as Marx did, draw the conclu-
sion that technical change is to a very sion that technical change is to a very
large extent a process of overcoming the restrictions set by these properties of human labour, through increasing the capital intensity of the production process.
Today developments in electronics mean that it is not so much which is replicated and extended. Thus any system which involves the
processing of data, decision making or processing of data, decision making, or
control of systems and equipment - in short, any task involving logic - is a candidate for the application of electronics. A list (not exhaustive) of these
tasks includes:? tasks includes:?
controlled movement of materials, -control of process variables
-shaping, cutting, mixing, moulding, etc. of materials
-assembly of components into subassemblies and finished products
-control of quality at all stag - control of quality at all stages of
manufacture by inspection, testing or analysis
-organisation of the manufacturing process, including design, stocknance, invoicing and the allocation of tasks.
*From the figures in Table 1 , we can seè that
if only the yearly addition to the labour force were to be absorbed by the expanding manufacturing sector, the labour intensity of
new investment projects would on average new investment projects would on average,
have to increase by a factor of 12.25 in the Philippines, 8.5 in India, 5.3 in Peru and 3.3 in

This all-embracing character of elec tronics will probably have importan labour intensive technologies in LDCs and thus for the possibility of absorbing a greater proportion of the labour force in the manufacturing sector through
reversing the trend towards more capital intensive technologies.
The reason behind this assertion is that the cause of increased competitiveness through using electronically based innovations lies not only in
their labour saving nature (which is less important in cheap labour economies), but also in probable savings in investment, materials and also in producing a better quality product, thus leading to
superior technologies., ${ }^{8}$. The labour saving nature has been amply dealt with in the public debate, but the lastmentioned characteristics need some elaboration. I shall give examples from two sectors which traditionally have
been very labour intensive, the mechanical industries and the garment industry.

Mechanical Industries. In metalwor king industries batch production with an associated low techniques, through poor machine utilization Numerically controlled machine tools (n.c. machines) constituted a firs attempt to increase the efficiency in this sector. With these machines, the con needed to produce the part are fed into the machine as the operation is per formed. The control signals imitate the nstructions given by a skilled machine operator, but with much greater speed
and precision. By changing the control tape, an n.c. machine can be quickly switched to the next job which may nvolve a totally different sequence of perations. In this way the downtime the setting time - of the machine tool is machine utilization in small batch pro duction work. By replacing the still relatively inflexible hard-wired circui try in the n.c. machines by software in mini- or micro-computers - i.e. pro
ducing computerized numerically ducing computerized numerically con-
trolled machine tools (c.n.c.) - the versatility and flexibility of the machine tools are considerably enhanced. ${ }^{9}$. The capital saving nature of technical
change in this sector from increased machine utilization C.n.c. and direct numerical control (which involves one computer controlling several machine tools) also increase quality, for example in precision la-
thing. They also increase the throughthing. They also increase the throughcapital embodied in materials. Furthermore they allow for in-process quality control, which makes possible early
discovery of mistakes, and correction of process variables through electronic feedback systems. The latter source of capital saving is of considerable importance for process flow techniques
also, for example in paper pulp and glass production, where work in progress
often constitutes a very substantial part of total capital cost. Finally, the fixed investment costs are reduced by price cuts in the cost of control systems. 'today's to one Japanese ${ }^{10}$ source, today's n.c. systems are priced

Garments. The clothing sector been characterized by having capital ture ${ }^{6}$. The complexity of the manufac pocess and ever changing fashions have not justified purpose built equip ment except in some cases. However ith microelectronics both a high on are made possiblegree of automa tion are m
explains ${ }^{6}$,
"The use of self-programming robotic
arms for cutting, and computerised
systems for systems for design, producing pattern monitoring quality of fabric and guiding
laser beam cutters is chand laser beam cutters, is changing the face being used to control knitting heads (instead of the centuries old Jacquard's
card), to control ink-injectors with his card), to control ink-injectors with high
flexibility to change design and colours; they are used to control sewing patterns and fast stitching. These are part of a
growing number of applications - the trend being towards a "total system concept", which means the use of com-
puterised techniques to detect flaws keep track of patterns and order,
monitor the progress of work throughout the plant, automate the matching of patterns and the cutting and sewing.
These applications save labour skill These materials (in the case of cutting, the
The
The investment saving nature of microelectronic based innovations in
this sector has been particularly emphasized by Raphael Kaplinsky ${ }^{2} \dagger$ who gives the example of a UK firm who produced an electronic pattern machine for a circular knitting loom
This machine cut down time in the change-over of knitting pime in the more than 50% "as well as lowering the hardware costs of the control system (itself at 20% of the total loom cost) by 50 percent".
made possible of the breakthrough made possible by microelectronics, in garments manufacturing will probably no longer be labour costs but technology.
All in all, it seems therefore very
unlikely that more labour intensive technologies may mare labour intensive the extent that the trends towards more capital intensive techniques may be The transformation of the technology \dagger Kaplinksy, together with Kurt Hoffman,
Howard Rush and Luc Soete at IDS and
SPRU, University of Sussex, is working on SPRU, University of Sussex, is working on
the implication of microelectronics on loping countries. I have greatly benefited from discussions with them.

WIRELESS WORLD MARCH 1980
in some traditional industries, i.e. not only garments but also textiles, leather and shoes ${ }^{2}$, may have particularly
severe implications for LDCs. The contribution to the total increase of manufacturing employment in the period 1968-1975 from these industries accounted for 30% for all LDCs and Furthermore in some Asian countries such as the Republic of Korea and Hong Kong, manufacture for exports accounts for a sizeable part of total
employment ${ }^{11}$. For example, it has been employment ${ }^{11}$. For example, it has been total increase in manufacturing employment during 1963-1970 in the Republic of Korea was due to an expansion of exports ${ }^{11}$. (This may partly explain Korea's exceptional perforimportant point is that it is particularly in these economies where textiles, garments, leather and footwear products account for a considerable part of manufacturing exports
Firstly, these traditional industries which account for a considerable part of yesterday's and today's employment generation in LDCs will probably fail to do so in the future. Secondly, as R.
Kaplinsky has pointed out ${ }^{2}$, the export oriented growth and employment strategy - much cherished today among both LDCs and Western economists - which so successfully has the Republic of Korea, will probably not be able to be duplicated by other LDCs in the future. This is essentially so since cheap labour will probably lose its importance as a factor in determining more advanced LDCs with the necessary skills and industrial environment' might be able to pursue a growth strategy based on the new technologies, but the employment impact will then be convincingly been done by R. Kaplinsky, that the high and possibly increasing unemployment figures in the OECD area will restrict the market for hese countries.)
ysis is that the manufacturing sector in most LDCs will not be able to absorb the growing labour force, not to speak of transforming the structure of employpened in the OECD area. While the urban-based service sector may improve the employment situation slightly, the only possible way out seems to be that the agricultural sector labour force permanently. This sector has greater potential to fulfil this task as it is much more flexible in the degree of mechanisation than the manufacturing sector - mainly due to the fact that the quality etc. are not so critical in agriculture as in industry. Well, what is the problem then? one
may ask. Why not let a very 'modern' ndustrial sector coexist with a very There are at least two very able ones.** Firstly, institutional changes - mainly concerning distribution of land - need to be implemented if agriculture is to absorb a growing proportion of the labour force. This is
widely recognized - even by the World widely recognized - even by the World
Bank - so I will not elaborate on it. Secondly, even if the employment problem were to be solved in this way, the
LDCs would experince LDCs would experience a gigantic dis-
tributional problem since they would faced with vastly different labour pro ductivities in the industrial and agricultural sectors. (I was first made aware o this problem by C. Edquist at the Research Policy Institute, Lund
Sweden.) To take China as an as she has undertaken the most far reaching institutional changes in recent decades, the pressure on the agricultu force has been associat growing labour orce has been associated with a de creasing marginal productivity of labthis occurred in spite of massive capital formation projects such as irrigation sector may absorb the the agricultura price to be paid for it, as noted already by the classical economists, is a very ow and possibly decreasing labou productivity.
The very in
The very important point here is that as the industrialization process con harged with the job of absorbing the abour force, the political problem of ransferring income from the high pro ductive, and geographically concen
trated, industrial sactor ductive agricultural sector will take on increasingly stronger dimensions. This distributional issue will probably be one of the key ones for developing countries to deal with. $\dagger \dagger$
TThis article is a revised version of an article Technical Change, Employment and Dis tribution which was attached to the Lund
Letter of Science and Technology for Basic
Human Needs, 13 June, 1979, published by Human Needs, 13 June, 1979, published by
the Research Policy Institute, University of the Research Policy Irstitute, University of
Lund, Sweden. We are indebted to both the
Salen Foundation Salen Foundation and to SAREC for finan
cial support for that essay. The Salen Foun cial support for that essay. The Salen Foun-
dation also generously sponsored the Lund dation also generously sponsored 'the Lund
workshop on technological change in industrialized countries and its consequences for developing countries', held in Lund in in Ma
1979. Part of the content of this article has 1979. Part of the content of this article ha
greatly benefited from discussions in the workshop. In addition, many people have
contributed with very helpful comments an contributed with very helpful comments on
earlier drafts. In particular, we would like to eationer Claftes. In particular, we would like to Howard Rush, Jon Sigurdson and John Wil-
ton, but also Enrique Buutista Richard Con ton, but also Enrique Bautista, Richard Con-
roy, Charles Edquist, Christopher Freeman
and Hans Gustafsson.
${ }^{* *}$ T will not, due to space limitations, treat the problems of surplus proceduction by a labour
intensive a sriculture which it the intensive agriculture, which is needed if the
industrial sector is to grow. See Jacobsson (1979), reference 8 .

References

1. C. Freeman. Technical Change, E ment and Unemployment. Mimeo. Science t, University of Sussex 2- R. Kaplinsky. The impact of microelec tronics. Technology on LDC Exports, of
Manufacture to DCs. Institute of Develop ment Studies, University of Sussex November, 1979 .
2. Stewart. Technology and Underdeve
bpment. Macmillan 1977 . J. Clarke. An examination of the historic basis for some recent projections of employ ment and unemployment in the U.K. Pape
presented for the joint SSRC IDS Con erence on U.K. Employment Projection 24th-25th May, 1979 .
3. L. Soete. Technical Change, Import Penet
ation and UK Employment: Some Points iscussion. Paper prepared for the Join SRC/IDS Conference on UK Employment Jojections, $24-25$ May, 1979 .
Technology and its effect on developing countries. Paper prepared for on developing ies of the Application of Microelectronics Wies of the Application of Microelectronics a
J. Bessant. An overview of the impact microelectronics on manufacturing industry. microelectronics on manufacturing industry echnological Change in Industrialize loping Countries, May, 1979.
l. S . Jacobsson. Technical Change, Employ 8. S. Jacobsson. Technical Change, Employ
ment and Technological Dependence Research Policy Institute, Lund, Sweden Discussion Paper No. 133.
4. K. Dickson and J. Marsh. The microelec-
tronic revolution: a brief assessmet tronic revolution: a brief assessment of th
industrial impact with a selected biblio graphy. The University of Aston in Birmingham, December, 1978.
5. S. Kobayashi. Editorial, Metalworking 1979. News Digest, Nagoya, Japan.
6. UNIDO. World Indistry sine
7. UNIDO. World Indistry since 1960. Pro gress and prospects, July 1979. E. 79 II IB.3.
8. T. Rawski. Industrialization, technology and Employment in the People's Republic o China. Report prepared for Employment an Rural Division, Development Economi
Dept., IBRD, April, 1978. 13. J. Sigurdson. The Changing Pattern of Intersectoral Technological Linkages in the
Rural Machinery Industry in China 2-22/WP 45, January, 1979 14. International Labour Organisation
Book. Labour Statistics (various). Book. Labour Statistics (various).
9. D. Morawetz. Employment Implication 15. D. Morawetz. Employment Implication a survey. The Economic Journal, September 16. World Bank. Atlas, 1977. 17. Boletin do Banco do Brasil, Vol. 15, No. 7. Janeiro de 1979.
10. D. Jones. Output, Employment and
Labour-productivity in Europe, since 1955 . Labour-productivity in Europe, since 1955.
NIER, 1978.
\dagger Indeed, as the absolute number of people
engaged in industrial production in the OECD area declines, the very same problem of taxing this sector in order to provide
employment and income in other sectors mainly public services where miccrorsele-
tronics is likely to displace proportionally little labour - may become (is?) a major little lab
problem

Optically-isolated triac

 controlA common problem with optical isola-
tors is that a separate power supply is tors is that a separate power supply is required. A tapping from a mains trans-
former primary can be used, but this is not always available, particularly on to use the transformer primary as a current limiter for a suitable low voltage supply. However, triacs often require gate current of around 50 mA , which is more than this type of supply can pro-
vide. To overcome this problem, gate current is pulsed with a duty cycle of about 10%. The current required by the l.e.d. to turn the triac off is about $250 \mathrm{\mu A}$,
so it can be directly driven by so it can be directly driven by c.m.o.s. logic. Resistor R_{1} is included for protec-
tion circuit.
G. R. Rulter

Woking
Surreỳ

Voltage-to-period

converter

In some circuits it is more convenient to have an oscillator whose period, rather
than frequency, has a linear relationship to the control voltage. This circuit was developed to drive an analogue delay line for audio signal processing Resistors R_{1}, R_{2}, R_{3}, diode D_{1} and Tr_{1}
form a reasonably temperature-stable current source, which charges C_{1} until the ramp voltage exceeds the control voltage. The comparator is biased by R_{6} for high current and fast slew rate, and prevent spurious triggering. The output is taken via D_{2}, R_{5}, which prevent negative bias, to a c.m.o.s. buffer and discharge circuit. With the values shown, antiphase outputs equal to the 12 and 1 of IC_{2}. The reset pulse width of around 100 ns is determined by propagation delays in the i.cs. If a longer pulse width is required, C_{x} may be used to approximately $C_{x} R_{5}$. If low-frequency
ape mane operation is required, C_{1} must be completely discharged and C_{x} should be equal to $\mathrm{C}_{1} / 6$. The value of C_{1} is limited by the ability of IC_{2} to discharge it
without damage and, in the prototype a 100 nF has been successfully used. With the values shown the period varies from about $0.5 \mu \mathrm{~s}$ to $30 \mu \mathrm{~s}$ for control voltages from 0.15 to 8 V .
E. J. Leonie-Smith

Herts

Enlarger analyse

This analyser uses a recently introduced silicon-blue photoamplifier i.c. to achieve high linearity at low light values. A bridge circuit measures the output of the TFA 1001W and a set-time control converts this current into a voltage which is compared with a reference level. The reference is set by a printing paper. Bridge balance is indi cated by a TCA 965 window discriminator and three l.e.ds. The bridge is fed with a few millivolts of a.c. from the ransformer to overcome hysteresis. At the 555 timer to expose the paper S turns the enlarger on for focussing and measurement, or allows S_{2} to start the exposure. Times from 2 to 140 s with paper speeds from 80 to 40 ANSI can be test strips.
In the prototype, the photoamplifier was housed in a potting box together with the linearity control, associated components and twin-screened lead to with a d.v.m. across the time control set to $1 \mathrm{M} \Omega$, by using the halving values obtained from progressively stopping the lens. Judicious setting of linearity can compensate for reciprocity failure.
Note that linearity setting only applies at low light values and the components may be omitted if higher levels only are sed.
R. I. Harcourt Surrey

Economic three rail supply

In t.t.1. circuits which use 70 type +12 V and -6 V are nupeded. The +5 V mon arrangement is inefficient and costly compared with this circuit, which provides the voltages required from single standard transformer. Although he 5 V rail may have to provide a sub-
stantial current, the other supply rails only need to deliver small currents which can be provided by half wave rectification. During positive half yail via D_{D} and the two windings series feed the +12 V rail via D_{1} and D_{2} Diodes D_{3} and D_{4} are biased off. During negative half-cycles D_{1} and D_{2} are biased off and the windings are isolated. The top winding now feeds the +6 V rail
with a return via D_{3} and the lowe winding feeds the -6 V rail via D Therefore, the +6 V rail is fed during both half cycles by the two secondary

Simple oscillator

A silicon bilateral switch, s.b.s., is a simple, economic and versatucing oscillator. With a 12 V d.c. supply the circuit oscillates at 100 Hz and draws only $400 \mu \mathrm{~A}$. Direct or alternating sup component values mains operation is possible. Frequency modulation or on/ off control is achieved by feeding a voltage or pulse to the gate. Minimum direct supply voltage is about 10 V but an $18 \mathrm{k} \Omega$ resistor between the gate and

windings alternately and both low cur cy ralls are fed on alternate half when capacitors are connected to pro vide an adequate margin for the regula tors. Hornby
Lancaster

A_{2} reduces this to around 3 V . An 88 speaker can also be used with a small reduction in output power.
Johannesb S. Africa

Triggered timebase

High-quality oscilloscopes with sweep rates up to $0.1 \mu \mathrm{~s} / \mathrm{cm}$ use special com ponents, such as fast f.e.ts and tunnel
diodes, together with logic ics. This diodes, together. with logic i.cs. This
timebase provides a wide sweep range with trigger hold-off and bright-line functions and does not require any expensive or uncommon devices. Three NAND gates generate a rampiwaveform,
and a Schmitt trigger shapes and inand a Schmitt trigger shapes and in-
verts the square wave from gate C. When the flip-flop is set the output goes low and C_{1} discharges via D_{1} to provide the flyback at pin 3 and a pulse at pin 4 . Ramp rate is varied by R_{1}, and C_{1} is
switch-selectable for a wide range of switch-selectable for a wide range
sweeps. The trigger input is shaped by a 710 and gated by a Schmitt trigger, so the flip-flop is only clocked when the output of gate C is high. This sets the output high and charges C_{1} linearly.
The 710 output also goes to D_{2} and an integrator, which negatively charges C_{2} and disables the oscillator around gate K. When disabled, the oscillator output is high and therefore enables gate G to clock the flip-flop. When no input signal
is present, the oscillator feeds the clock input of the flip-flop and provides automode operation for the timebase. K. Padmanabhan

Madras
India

now MWMWN D.iv. Keyboards Individual keys, rows of keys or groups of keys, elements of the
series 87 family of switches can be used to create keyboard forms
for
for prototyes, be prototypes, short runs or
for
volume production, according to the makers, Highland Electronics. Legending of switches is
achieved by hot stamping of the
buttons to customers' buttons to customers' require--
ments before delivery, although for prototype work, versions of
the switches are available with the switches are available with
snap-on caps. In this event a legend sheet is supplied and each legend is placed under the cap. The series 87 employs snap-dome
contacts previously used on contacts previously used on
Highland series 83,84 and 86 , all 16 button keypads. A typical
circuit for these switches is circul-pore/common-bus and the
single-pose switches is 3×4 and 4×4 keypads are also available with matrix switching.
Highland Electronics Ltd, High. land House, 8 Old Steine Brighton, East Sussex. ww302

V.s.w.r. / power

meter
Direct reading of v.s.w.r. and output power without the need
for interpolation is for interpolation is one of the
capabilities of the v.s.w.r./power meter offered by Zycomm Elec-
tronics. The unit is autora

NEW PRODUCNT

Prestel/ Viewdata

printe

The Olympia International NMP 40 mechanism, incorporated in a printer terminal, forms one of the
first screen image printers to appear in the UK. A hard copy of displayed Prestel/Viewdata
images can be made with the images can be made with the
printer which Dataplus, the equipment's distributor, claims
as "very quiet" in operation. The as "very quiet" in operation. The
unit will print alphanumeric chaunit will print alphanumeric cha-
racters and graphics at high speed and paper loading is
simple. The printhead consists of simple. The printhead consists of
240 discrete electrodes equally
俍 240 discrete eiectrodes equally
spaced across the 127 mm wide
paper and each is spring-loaded, obviating the need for adjust-
ment. The rubber platen is driven ment. The rubber platen is driven
by a small d.c. motor, this being
the only moving part. Overall dimensions of the terminal are
250 mm wide $\times 360 \mathrm{~mm}$ dep x 250 mm wide $\times 36 \mathrm{~mm}$ deep \times.
150 mm high. Production quant-
ities ities of the unit will be available
in late 1980 as will the full drive in late 1980 as will the full drive
electronics to suit UK television electronics to suit UK television
receivers. Dataplus Ltd, $39-49$ Roman Road, Cheltenham.
Ww301

for power output measurement,
covering 20 W to 2 kW in three ranges for 1.8 to 30 MHz and 50 to
150 MHz and 2 W to 200 W for the 150 MHz , and 2 W to 200 W for the
430 to 470 MHz range. V.s.w.r. 430 to 470 MHz range. V.s.w.r.
from $1: 1$ to infinity can be measured. Separate sensing heads are
supplied to cover each frequency rapplied to cover each frequency at any point in the feed line, including the masthead, for precise radiated power indication.
Push switches on the front panel permit the selection of the appropriate head and the display
of forward or reverse power as forward or reverse power as The electronic comparator included in the unit permits con-
stant readout of v . $\mathrm{w} . \mathrm{r}$ irrespective of power variation, thereby giving true indication during peech on s.s.b. The unit is for operation on 240 v 50 Hz mains.
Zycomm Electronics Ltd, 47,49 nd 51 Pentrich Rd, Ripley, Derby 53 DS

Digital slow scan

 transceiverThe Colorado Video model 285 is intended to provide "quality" tv picture transmission over data
channels and is available as a receiver, a transmitter or transceiver. Features incorpo-
rated rated are "frame freeze", a, repede for surveillance applica-
mod tions and continuous display at the receiver as each new image
wipes off the previous image. The unit accepts tv signals from camera, v.t.t.r. or video disc recorder and aso produces
signal for viewing on cc. monitors. Transmission is in the synchronous serial digital form at rates up to equires no adjustequipment wequires no unit itself tracking the modem clock rate. The operator may
select left-to-right or top-to bottom scanning to suit the item scanned and may transmit either a single field (shorter transmis-
sion time at reduced resolution) or a full frame, i.e. normal trans
mission time mission time at full resolution
Transmission times vary accorTransmission times vary acco
ding to the grey-scale levels chosen, either 64 levels (6 bit) or
256 levels (8 bit) deend 256 levels (8 bit) depending upon
the bit rate. Data may be en crypted for security purposes. Prices start at $\$ 9,000$, this being the price for the receiver only.
Colorado Video, Box 928 , Boulder Colorado 80306 USA
WW304

THE FOR. 1004 ANEW WIDEBAND GRAPHICAL RECORDER

9 Recording Modes

The FOR-1004 is the first of a new generation from Medelec. A highly been specially developed for wide anging applications in research and ndusty. it has many adranteand over conventional instrumentation There are nine recording modes all push button controlled, which permit the optimum presentation of most graphical data. Triggering is fully automatic and displayed sign can be monitored via an internal and wide range timebase allows the detailed examination of transients and trends.
medelec Attractive new styling
and ease of operation and ease of operation FOR-1004 an importa new instrument.

Simultaneous View and Record Four High
Channels
High Resolution Inexpensive Records For further information please contact:
Medelec Limited Manor Way Old Woking Surrey GUZ22 9JU England Tel: Woking (04862) 70331 Telex: 859141 Medlec G
A Vickers Limited Company
WW - 123 FOR FURTHER DETALS

Simply ahead

ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance - and this is exactly what we have achieved in our new generation of modular units. I.L.P. professiona design principles remain - the completely adequate heatsinks, cted sealed circuitry, and excellent performance These have stood the test of time far longer than normally expected from ordinary commercia odules. So we have improvents whated on products will meet oven more stringent demands such for example as hose revealed by vastly mproved pick-ups, tuners loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system I.L.P. modules are for laboratory and

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume $-10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance -5 K .

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	$\begin{aligned} & \text { Size } \\ & \text { in mm } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { Wight } \\ \text { in gms } \end{array}$	$\begin{aligned} & \text { Price } \\ & \text { V.A.T. } \end{aligned}$
HY30	15 W into 8Ω	0.02\%	80dB	-20-0- +20	$105 \times 50 \times 25$	155	$\begin{aligned} & \text { £6.34 } \\ & +95 p \end{aligned}$
HY50	30 W into 8Ω	0.02\%	90 dB	-25-0 +25	105×50×25	155	$\underbrace{£ 7}_{1.24}$
HY120	$\begin{array}{\|l\|} \hline 60 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.01\%	100dB	$-35-0 \cdot+35$	114×50×85	575	$\begin{aligned} & £ 15.20 \\ & +£ 2.28 \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100dB	$-45-0 .+45$	114×50×85	575	$\begin{aligned} & \begin{array}{l} £ 18.44 \\ +£ 2.77 \end{array} \end{aligned}$
HY400	240 W into 4Ω	0.01\%	100dB	$-45-0 \cdot+45$	$114 \times 100 \times 85$	1.	${ }^{£ 27.68}$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mv
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models. $10 \mathrm{~Hz}-45 \mathrm{~Hz}$ - 3dB

- ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPOST SYSTEM imply fill in order coupon with payment or
credit card instructions. Post to address as below but do not stamp envelope - we pay
postage on all letters sent to us by readers of
this iourn

onnect easily in stereo. With easy to
Ilow instructions.
$4.64+74 p$ VAT

The HY5 pre-amp is compat ee with $40 \times 15 \mathrm{~mm}$ and single pack $50 \times$ function equalisation for Magnetic/ eramic/Tuner/Mic and Aux (Tape) Active toine control circuits; 500 mV . out. Distortion at $1 \mathrm{KHz-0.01} \mathrm{\%}$.
Special strips are provided for connec-

 Please debit my Account/Barclaycard Account No.

name

address.

THE BIGCEST SELECTION OF CASES IN EURDPE

人 WEST HYDE
 $\xrightarrow{\text { VISn }}$
 WEST HYDE DEVELOPMENTS LIMITED. UNIT 9, PARK STREET INDUSTRIAL ESTATE, AYLESBURY, BUCKS. TEL: 029620441

 ww- oss For further detalls

Whatever it is, the $-7| | S^{\prime}$ range

 of power amplifiers will handle it $\mathrm{Th}_{\mathrm{e}} \mathbf{H} \| \mathbf{H}$range is designed to handle heavy industrial usage in the fields of vibrator

S 500D

Dual Channel
${ }^{19 \prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel 900 w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005\% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force coole dissipators

S 250 D
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime \prime}$ high
500w r.m.s. into 2.5 ohms
Retro-convertible to dual channe DC-20 KHZ at full power
full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, onstant current and voltage use are available
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE $(037976) 639 / 594$

- Honochrome or colour	High tolerance on insert procedure
- High conversion rate on ageing	
- Standard, quick heat, delta or inline	Long service life
- Wide range of neck sizes and heater ratings	Neck glass, tube bases, equipmen

- Wide range of nect
- Predictable in use and performance
- High conversion ratert proced - Long service life
- Neck glass, tube alses and andied
rotulea
EDICRON tro Redan House, 1 Redan Place, London W2 4SA
Tel: $01-2214717$ Telex: 265531 Edicrn \mathbb{G}.

MAX REEL SIZE 11 R70/71 bulk tape erasers are simple to operate and will erase cassettes, carrridges and reess of tape up to a maximum r
size of $111 \nu^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently. LR70/71 bulk erasers are currently used in Broadcast Companies, ments and the computer Industry.
Quality equipment moderately priced

LEEVERS-RICH EQUIPMENT LIMITED 19 Trinity Road, Wandsworth London SW18 1 YO

DEVELOPING A

 MICROSYSTEM?

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues or about the same price.

Our new 169 is a tough, lightweight
battery-powered digital multimeter for use in the field or
n the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with
is low-parts
Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer componen ife and fewer failures. MTBF is 20,000 hrs. or about 10 years.

Is this the end externally accessible for quick replacement Extensive vibration stress-testingassures the 169 will stand up to all the mechanical shock nd abuse normally associated with tough applications.

Cost-conscious ease of maintenance is for Analogue o thoroughly designed into the 169 that $1 \cap$ 1-1 1 only one calibration adjustment a year is required. That per year at a cost of about fl 50 touch. For example, the 169 needs only one battery change When you factor in 2.50.
When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display coded front pMs and the easy-to-read, colour No analogue meter or DMM can match the price performance of the new 169. It costs $£ 99$ (plus VAT) For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Ex stock
WW - 035 FOR FURTHER DETAIS
\square
Koithley Instruments Ltd.

1. Boutton Road

GBITED King, Berkshire RG2 ONL (0734) 861287 Telex: (851)847047 Koithiay Instruments GmbH Heigihoftrasse 5
D-8000 München D-8000 München 70 (1089) $714-40-65$
Telex: 5212160

Koithlay Instruments SARE Koithloy Instruments SAR
44, Rue Anatole France 44, Rue Anatole France
F-91121 Palaiseau Cedex
$01-014.22-0.2048$ 01-014-22-06.
Telex: 8421204188

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all. . .

... our new catalogue is bigger and better than ever. Within its
60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps, Connectors, Boxes, Cases, Bridge
Recififiets. Cables. Capacitors, Crystals. Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs. LEDs, Multimeters, Plugs,
Sockets, Pots, Publications. Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage
Plus details of the NEW Marshall's budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy
ordering. rdering
Hus - Many new products and data.
Plus 100 s of prices cut on our popular lines including I.Cs.
Transistors. Resistors and many more
you need components you need
you need components you need the new Marshalls
Available by post 65 p post paid from Marshail's, Kingsgate
House, Kingsgate Place, London NW6 4TA. Also available
House, Kingsgate Place, London NW6 4TA. Also available rom any branch to callers 50 .

Ratail Salas: London: 40 Criekiowood Broadway, NW2 3ET. Telf: 01.452 0161/2. Also 325 Edgware Road, Wz. Tell: $01-7234242$. Glasgow: 85 West
the indispensable

THRUUINE WATTMETER

The Standard of the Industry What more need we say.
-30 en electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: $01-868$ 1188- TELEX 8812727

E®A.A.G A150 MIXER AMPLIFIER 150 WATTS SINE WAVE POWER

 K.A.C. Eloctronic Inv. Lta., 20 Priory, St., Tonbridge, Kent
CALL FOR DEM or PHONE ($\mathbf{0 7 3 2 \text {) }}$ 358109 FOR LEAFLET WW - 011 FOR FURTHER DETAILS

Oh ${ }^{2}$ ONewBear Components (in)

CAL.LERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

Microcomputing I.C.'s		02 based micro kit . . £ 85.60
MC6800 - . . \& 7.15		8K RAM KIT $£ 95.00$
		MAINS ADAPTOR £ 5 500
	Disc Drives	V.D.U. KIT $£ 88.00$
MG6810AP	SA400 SHUGART $5^{1 / 4}$ " S.S. £ 189	SPECTRONICS
	6106 BASF $51 / 4 "$ S.S. $\mathcal{E} 190$	UV Eprom-Erasing Lamp
MC3459 - ¢ 2.43	6104 BASF $8^{\prime \prime}$ D.S. £ 465	19 mins.
780 CPU 2.5 MHz . £ 8.99	Plus range of Media, PSU's and	PE14T* Erases up to 6 chips. Takes approx.
	${ }_{\text {Connectors. }}^{\text {Plus range }}$ (PE24T* Erases up to 9 9 chips. Takes approx. ${ }^{\text {a }}$ (76.58
Z80A CPU 4MHz - £ 13.99		15 mins. £111.22
	Memories	
		PR 320 T* Erases up to 36 chips. Takes approx.
(INS 8060N)		
		PC1000* Erases up to 72 chips. Takes approx. $7 \text { mins. }$
		UV Eprom-Erasing Cabinet
6551 \& 10.79	MC6803L7 (MIKBUG) $£ 13.65$	
6545 - . . . £ 16.66	2716 (INTEL) - . £ 21.50	* Includes a 60 min . Timer.
$\begin{aligned} & \text { Z8001 } \\ & \text { AMD } 951 \text { i: arithmetic package } \end{aligned}$	¢136.50	TERMS: Credit Sales (minimum £10.00) Barclaycard and Access Welcome. Please add 15% VAT.

CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290 SEND FOR OUR NOVEMBER CATALOGUE aND BOOK LIST

FUSES Quick acting, Anti surge. Ceramic. from $£ 2.80$ per 100
POWER RESISTORS $5 w-17 w .4 R 7-10 \mathrm{~K}$, from $£ 10$ per 100 PCB Guides, Self-fixing from $£ 4.86$ per 100 . ELMA knobs \& accessories. Crimp (solderless) terminals Cable Sleeves \& Markers from $£ 1$ per 1,000
SLEEVING, Neoprene, PVC, Silicone rubber - all colours
Surplus stock lists available of Power resistors. c.f. resistors. selfffixixing epoxy Eureka resistance wire (and other
types), Polystyrene capacitors etc.

PBRA LTD Hopfield
Golden Green Tonbridge Kent TN11 34

HI-FI TONE ARM BARGAINS -from Britain's Leading Audio Store

ARISTON SA 100 -Iow mass
hign qualitrarm S. shaped Lowcomoliance

AUDIO TECHNICA AT-1007
 ALL LEADING MAKES OF HI-FI and MANY OTHER ACCESSOR BARGAINSAVAILABLE
 -7 WW - 044 FOR FURTHER DETAILS

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter
FEATURES.

Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of
applications including churches, schools applications including churches, schools
restaurants, factories, shops and offices.

Each amplifier is available with input facilities for microphones and music sources;
six programme push button AM tuners or FM
tuners and preannouncement chimes are available options.

One model incorporates automatic switching to a battery supply in the event of a power failure.
satisfy your a versatile system can confidently satisfy your exact requirements.

Please tick as required.
For further information on this productComplete range of sound equipment
Name
Position
Attach this coupon to your letter heading and send to
MILLBANK ELECTRONICS GROUP. LIMITED, MARKETING SERVICES UNIT
MILLEANK M.O. BOX 33, UCKFIELD, SUSSEX. ENGLAND.

Recognise me?

If you do you should know your authorised

Avo Sales and Service Centre

Quick turn round on estimates/repairs Large stocks of new AVOMETERS

(0)
Farnell International Farnell International I Instruments Ltd., Sandbeck Way. Wetherby West Yorkshire LS22. 4DH Tel 093763541 Telex 557294 Farist G
wW - 112 FOR FURTHER DETALLS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial PL504 - PL802 - PCL805 - CV131-CV136-
CV138 - CV329 - CV345 - CV450-805-807-813-2K25, Etc. Phone/write to:
PYPE HAYES RADIO LTD. 606 Kingsbury Road
irmingham $\mathbf{B 2 4} 9$
$021-3734942$

Codesoesed zecernonios

wW - 113 FOR FURTHER DETAILS
 VVinto 600 , with
Fixed and Variable Atten.
Sine and Souare Waze Sine and Square Wave Based on a Linsley
Battery or Mains. $\substack{\text { Tax extra } £ 5.40 \\ \text { T\&P } £ 2.00}$ 325 FORE STREET 325 FRER STREET, EDMONTON, LONDON N9 OPE
$01-8073719$ WW-076 FOR FURTHER DETAILS

AIR - MARINE - COMMERCIAL VHF/UHF MONITOR RECEIVER

Frequency Ran
e: 66-88, 118-136, 144-174
$450-512 \mathrm{MHz}$
Send for details
OM $\sqrt{E R}$ (MIDS) Ltd

VHF FM MOBILE

- 10 watts RF power
- Up to 12 channels
- Home Office Approved
- Made by us in the UK
- Made by us in the UK - Small physical size

Great IGY(DSale
 SUPER SOUND SAVING! BI-KITS AUDIOMODULES

 DINDY LOW NOISE CASSETTES \qquad PRE-INCREASE PRICES! A110 AMPLIFIERS

SPECIAL OFFER
COMPONENT PAKS

Electronic Tubes Semiconductors

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AERO ELECTRONICS (AEL) LIMITED GATWICK HOUSE, HORLEY, SURREY ENGLANDRH6 9 SU
Telephone: Horley (02934) 5353 Telex: 87116 (Aero G Horley)
Cables: Aero G Telex Horley
ww - 105 FOR FURTHER DETAILS

WE MAKE JOYSTICKS

in single, dual or triple axis forms,
and we sell them in Thousands Hundreds, Tens or Ones!
No minimum order, no prohibitive
small auantity prices No minimum order, no proils with
small uaantity pries. Specials
switches as well as or instead of switches as welt os in levers, etc.
pots, press buttons
quickly even in 1 offs. Also very
heazy
NEW CONTACTLESS INDUCTIVE JOYSTICKS In quantity production from
FEBRUARY for applications
find where extremely long life is es-
sential, but costs preclude sential, but costs preclude
aerospace quality potenaorospace
tiometers. Synchronous detect-
tion in screened can makes tion in screened can makes
these ideal even for areas subhest to very high levels of in-
iereference. Ideal for applica tereference. Ideal for applica-
tions sike electric wheelchairs, tions like electric
tork lift trucks, and any applica
tion tion where constant cycling o
controls is experienced. Avail able in single and dual axis and rotary shatt versions. SAA PO Cortrols, 71 Dolphin
USoad, Bristol, Connecticut Road. Bristol, Connecticut
O6010 USA. 2035836994
Germany. Appointment soon Elsewhere. Applications invited CONTROL LTD.

Ow Works, Bristow Road,
$01-570$

 6 Digit Frequency Display from input or or output $\begin{aligned} & 0.01 \%-10 \% \text { FSD W Weighted } \\ & \text { Mean or or or on on ouasi Peak }\end{aligned}$ 100 V V-100V FSD Millivoltmeter 1% Accuracy 1% Accuracy 1 Hz -200 KHz Bandwidth Uitra low-power operation from single Prg battery or optional mains adaptor DIN or BNC connectors

FEEL DEEP DOWN

SUB FREQUENCY SYNTHESIZER When connected to your Hifi system or PA this unit will gene

 the original music. The $\mathbf{S F S}$ Frecreates these lost parts.
sound image, widening the dynamic range of the recording. HOW IT WORKS
The frequency and amplitude of recorded signals in the rang
60 to 120 Hz are used to synthesize frequencies one octav lower. Thase high tonal purity subberamononic signals are then
added to the existing bass to produce a smooth spectral exten
ate addad to the existing bass to produce a smooth spectral exten
sion of the recorded sound. Higher frequencies are not affecto
by the $\mathrm{S} S$. TWo controis on the front match the input signal to the synthe
sizer level and control the level of sub-harmonic sound. The S (no.5/1979) which praised the unit for its sensational offec when connected to a system of adequate power capacity. Th
sensation of feeling sound was described as tremendous.

Mail your order to:
INGENJÖRSFIRMA LEIF MARENIUS \& CO HB P.O. BOX 5086, S-421 O5 VASTRA FROLUNDA, Swede ww - 010 FOR FURTHER DETAILS

her details of any o the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s) Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course, Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
f you are way down on the circulation list, you may not be retting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION astralie: Gordon a

 Rus aila Perite-LLE
 ypus: Goneanal prass

Sonmerk: Dansk

 traco: Dawson-France Anco. Dawson-FFinces

Spacel/SatellitelMilitary specification
Since 1967, Merrimac has developed sixty seven different items designed for more than twenty five space and missile applications.
processing and many other signal processing devices are in use in fighter and reconnaissance aircraft demonstrating a reliability that is second to none
Pascall can offer ther Merimac Pascall can offer the most line of signal processing
components in the industry - over seven hundred and fifty catalogue items from DC to 18 GHz incorporating lumped element,
stripline or ferrite technology. And if this isn't sufficient to meet your requirements Merrimac offers custom designed derivatives of all
these products which surely will these products which surely will. Pascall in-depth service and advice discuss the Merrimac range in detail and recommend integrated component packages - providing controlled component electrical

WW-115 FOR FURTHER DETAILS
inerfaces at lower costs than the purchase of individual components. Why not get the full facts on Merrimac from: Pascall Electronics Limited Hawke House Green Street, Sunbury-on-Thames,
Middlesex TW16 6RA Middlesex TW16 6RA
Telephone: 109327$) 87418$ Telée: 8814536 UK agent for:
Merrimac

Postage will
Postage will
be paid by Licensee
\qquad

BUSINESS REPLY SERVICE Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH GROYDON, SURREY CR2 9PS

Wireless World:

 Subscription Order FormTo become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager

IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

WIRELESS WORLD Wireless World, February 1980 WW 062

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosigen-Telep $22-4525$ INTFOIR

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 Telex : 37342 Kompass

Japan Mr. Inatsuki Trade Media - IBP (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku Tokyo 106 Telephone : (03) 585-0581

United States of America Ray Barne IPC Business Press 205 East 42 nd Stre IPC Business Press 205 East 42 nd Sti (212) 6895961 - Telex: 421710 Mr. Jaek Farley Jnr., The Farrey Co. Suite 1548, 35 East Wacker Drive, Chicago, lllinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch,
Elmatex Internation
P.O. Box 34607 ,

Os Angeles Calif. 90034 U.S.A. Telephone : (213)
Telex: 18 - 1059 .
elex: 18-1059 Mr. Jack Mentel, The Farley Co., Suite 6
Ranna Building, Cleveland, Ohio $4415-$
The Telephone: (216) 6211919 Mr. Ray Rickles, Ray Rickles \& Co., P.O. Box 2008, Miami Beach, Florida 33140 - Telephone $\div(305) 532730$ Mr. Jim Parks, Ray Rickles \& Co. 3116 Maple Drive N.E., Atlanta, Georgia like Teughio IPC Busines Press, 15055 Memorials, Ste 119 , Houston 77079 -Tetephone: (713) 7838673

anada Mr. Colin H. MacCulloch,

 International Advertising Consultants 15 Cariton Tower, 2 Cartion Street,Wireless World Subscription Order Form Wireless World, February 1980 WW 062

UK subscription rat

 USA \& Canada subscription rates 1 year: $\$ 31.00$Overseas 1 year: $£ 12.00$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value

Name.
Address

IPC BUSINESS PRESS Ltd.
\qquad

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV
field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of ny signationger level and slope are selected on on £360.00*.

Plus the 4S6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

GUnilleskeo scnil onnizillo

 $\mathbf{w w}-114$ FOR FURTHER DETAILS

WIRELESS WORLD, MARCH 1980

Cabinet Size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime \prime} \quad$ Teleteision by courresy of Rumbelows Ltd, price e5s

PSI Comp 80 280. Based powerful scientific computer.
Design as published in Wireless World, April-September, 1979

The kit for this oustandingly practical design by John Adams being published in a series of articles in Wireless World really is completel

Value Added Tax not included in prices

 and NF rate changes excluded.
EXPORT ORDERS: No VAT.

UK Carriage free
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

ANDOVER
(0264) 64455

THE CRÊME DE LA CRÊME OF ELECTRONIC ORGANS

 FOR YOU TO BUILD...Yes, any one of these superior instruments can be built by Yourself in the comfort of you own home. The unique WERSI Kit-pack system is designed
round modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully yustrated instructions and preformed

 (2)

The Voice of © 페탸=I

HEAD OFFICE
Maple Cross Industrial Estate
(Tel: Rickmansworth 75381)
NOTTINGHAM
389 Aspley Lane (Tei: Nottingham 296311)
W - 116 FOR FURTHER DETAI

HIGH EFFICIENCY POWER AMPS

 200W to 2000WThese amplifiers are not for those who wish to heat their dinner on as they remain cool without the need fo expensive and heavy cooling fans.

They are d.c. coupled throughout giving low distortion but excellent transient response
Typical Part Specification Output Power 500W into 4ohms
Full Power Efficiency 90\%
1/4 Power Efficiency 70\%
Frequency Response DC -100 KHz
Signal to Noise $>80 \mathrm{~dB}$
Short Circuit Indication and Protection Overload Indication
Weight 15 kgs
For further details apply to
C. M. ELECTRONICS 11 Brookfield Lane, Cheshunt, Herts
Tel: Waltham Cross (0992) 32451

Happy Memories

 dept.ww

19 Bevois Valley Road, Southampton Hants SO2 OJP. Tel: (0703) 39267

SERVICE TRADING CO

 TORIN B BLOWER
$220 / 240 \mathrm{~V}$ AC Apertur

 24V DC BLOWER UNIT

 MINIATURE UNISELECTOR

VARIABLE VOLTAGE TRANSFORMERS VABIABLLE- 0 - 60 V

TRANSFORMER
$50 / 60$ OUT PUT

COMPRESSOR

STROBE! STROBE! STROBE!

* hr-light strobe Kit mk.iv *

REDUCTION DRIVE GEARbOX
 AC WKg TUBULAR CAPACITORS
 'VENNER TYPE' ERD TIME SWITCH
200/ 250 V AC 30 amp. 2 on $/ 2$ off everr 24

 SANGAMO WESTON TIME SWITCC
 Solar dial. R \& T.
 MIIALURE PROGRAMMER

 N.M.S.
MINIATURE 24-HOUR TIMESWITC

PROGRAMME TIMERS
240V AC operation. 12 cam modol

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
 fange or xenon tubes avalable
fom siock. SAE tor full deialis.
RELAYS

[^1]9 Little Newport Street,
London WC2H 7JJ
Phone 01-437 0576

KIT

SOLID MAHOGANY CABINET
A high-quality push-button with a 24 W r.m.s. per channel Stereo

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off atter approximately 40
seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguished as a hard-backed book. Detection range up

Wireless World Dolby noise reducer

 Sionalto-onaise ratio: 75 dB (20Hz to 20 kHz z signal at Dolby level
at Monitior outpur
Dynamic range $>90 d B$
Complete Kit PRICE: $£ 43.9$

We guarantee full after-sales technical and servicing facilities on all our kits

All kits are carriage free

 IITEGREK LIMITEDCut costs and speed trouble shooting

Huntron Tracker

A reference amplifier for disc monitoring and tran

Reviewoed in November issues of Gramophone, Hi-Fi for Ploasure and
Popular Hi-Fi.
: Dominus

- Cranleigh, Surrey GU6 7JF. Tel. 048666477 •

ww - 030 FOR FURTHER DETALL

ELECTRO-KECHEOMDONENTS LTD.

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE

 TRANSPORT MECHANISMELECTRO-TECH COMPONENTS have secured very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as

Plus $E 1$ P\&P
Trado and Expon Enquiries Invited

\star CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD \star
We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood to complement the improved specification and late
cassette electronics since the orignal design was pubbished. The kit is is ideal for use in coniunction with the JVC transport mechonism (above).

Price of Kit (without transport mech.) $£ 35.95$ VAT inc. plus $£ 1.00$ P\&P
Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish. Price of Case $£ 9.75$ vat inc. plus $£ 1.00$ P\&P.

WIRELESS WORLD, MARCH 1980
WWII TUNER

INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHER FROZEN Another superb design by synthesizer expert Tim Orr!
TRANSCENDENT DPX
As featured in Electronics Today International August, September
October, 1979 issues
DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

 No

COMPLETE KIT ONLY £299.00 + VAT:

EXPORT A SPECIALITY!

Value Added Tax not included in prices UK Carriage FREE

SECCuIICOB DELVERY: For this opiona: service (U.K. mainland only)

 NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONE NUMBER UNCHANGED our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS $\begin{array}{lr}\text { ANDOVER, HANTS SP10 3NN } & \text { ANDOVER } \\ \text { (STD 0264) } 64455\end{array}$

20W, 30W AMPLIFIERS

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W STEREO AMPLIFIER $\mathbf{£ 9 9 . 3 0 ~ + ~ V A T ~}$

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

LINSLEY-HOOD CASSETTE DECK $£ 79.60$ + VAT

TRANSCENDENT 2000
SINGLE BOARD SYNTHESIZER

COMPLETE KIT ONLY
$£ 168.50$ + VAT!

 prices in our free catalogue

CHROMATHEQUE 5000 5-channel lighting effects system

 $\varepsilon 49.50+$ VAT

MFA200 100W MIXER/AMPLIFIER

ww - 127 FOR FURTHER DETALLS

ALLERS VERY WELLOME STARCTLY BETWEEN Sam-1 pm and 2 -5pm Monday to Saturday inc.

there are

 transformers and...
Drake Transformers

OEM - let Drake Transformers advise you on a component specification and you on a component specification and design to solve that special problem. Pre-
production prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.
Expertise and service put DRAKE TRANSFORMERS in a class of their own

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

When you want too.

HEYCO MANUFACTURING COMPANY LTDD
WW - 121 FOR FURTHER DETALLS

- ÓVIIN

If you are interested in a particular article/ special Feat
this issue of
WIRELESS WORLD
why not take advantage of our reprint service. Reprints can be secured at reasonable cost to Reprints can be secured at specifications providing an attractive and valuable addition to your promotional material: (Minimum order 250.)
For further details contact.
Brian Bannister, IPC Electrical-Electronic Press Ltd. Phone: 01-261 8046 or simply complete and return the form below
To Brian Bannister. Reprints Department
Dorset House, Stamford Street
London SE1 9LU
1 am interested in copies of the article/ advertisement headedeatured in
on page(s)
WIRELESS WORL
Please send me full details of your reprint service by Pleturn of post
Name
Company
Address

Electronic Brokers
49/53 Pancras Road LondonNW12QB Tel: 01-837 7787. Telex 298694 No. 1 in Second User Minis \& Peripherals

MODULAR ONE SERIES VDU

EXAS SILENT 700
 and

TERMIPRINTER 7075

DEC PDP11/04 SPECIAL PURCHASE

ASR33 and KSR33

 TELETYPES

BALL MIRATEL MONITOR

- 128 FOR FURTHER DETAIIS

DEC EQUIPMENT

PRINTERS \& TERMINALS

 GE TRRMINT 300 KSR Impact Printer HAZELTNE H-1200 VDU Iroan
HAZELTNEH-2000 VDU
SCOPE DATA Electrosensitive
 TEKTRONX 4010.1 Graphics Terminal E1.500.00
TEKTRONX 4601 Hard Copy Unit
E1,400.00
NEW ASCII KEYBOARDS -NEW LOW PRICES

 KB15P Edge connector for
KB756 or KB756MF operation at 5 V only (plugs in to
P.C.B.) KB771 71-station ASCII Key-
board including numeric/ board including numeric/
cursor control cluster, mounted
in steel enclosure in steel enclosure
DB25S Mar
KB771 Mating connector for

Unless otherwise stated all
equipment offered in the equipment offered
Electronic Brorers
advertisement is

ctronic Broked	
ertisement is	Add 15\%
Test Equipment als	to
months; computer peripherals for 3 month	Carriage and
Hours of Business:	on all items
losed lunch 1-2 p.m.	

A copy of our trading
condititions is available on condition
request.

WW - 124 FOR FURTHER DETAILS

N
HEWLETT PACKARD
Hewlett Packard 202H 54-216 MHz
AM/FM
203 203A Variabe Phase sine \& Square
Wave Generator 0.005 Hz -60hHz
 Wave only. Metered p/p $\begin{aligned} & \text { £ } 415 \\ & 6080 \mathrm{VHF} \text { Signal Generator } 10\end{aligned}$ 608 VHF Signal Generator 10
420 MHz O.1 V VO 5 V into 50Ω AM:
$0-95 \% \mathrm{E}$: 608 EV VF Signal Generator, $10-$
480 MHZ
608 F VF Generaro 608 FWHF Generator 10.455 MHz 612 A UHF Signal Generator. 5
1230 MHz
£ 4204 A D

MARCONI INSTRUMENTS
 TF144H/4S AM Signal Generato
The spac. as $144 \mathrm{H} / 4$ but
 TF 801011 AM Signal Generator
$10 \mathrm{kHz-40MHz}$
TF $80-10$. TF $8010 / 8 \mathrm{SAM}$ Aignal Generator. TF8010/5M1 AM Signal Generator.
$10-400 \mathrm{MHz} 0.1 \mathrm{NV}$ - V into 50Ω. AM 0.90% @ 11 kHz Demodulator out-

20
TF
 520 MHz 9000 TF 2005 R Two Tone AF Signal Source.
2 identical oscillators 20 Hz -20kHz + 2 identical ossiliators $2 \mathrm{OHz-20kHz}$
$10 \mathrm{dBm} \mathrm{O} / \mathrm{PO}-111 \mathrm{~dB}$ attenuator TF2101 MF Oscillator. $30 \mathrm{~Hz}-550 \mathrm{KHz}$

SINGER
.Up to 500 MHz . $£ 1200$ PHILIPS 10 MHz Sine, squar Generator. 1 MHz $\stackrel{\mathrm{P}}{\mathrm{s}} \mathrm{s}$ TEXSCAN

OSCILLOSC

 5MHz Dual Trace CDU 1001020 HENLETH PACKARD | 75 N |
| :--- |

$$
\begin{aligned}
& 100 \\
& \text { PM } \\
& \text { PK }
\end{aligned}
$$

24MH 25 MH 434

$$
\begin{aligned}
& \text { Larg } \\
& \text { mai } \\
& \text { on }
\end{aligned}
$$

$$
\begin{aligned}
& \text { malr } \\
& \text { on } \\
& 500 \\
& 7 \mathrm{~A} 2
\end{aligned}
$$

Fize TF2 $102 \mathrm{M} / 1$ AF Oscillator $3 \mathrm{~Hz}-30 \mathrm{kHz}$ TF1060i3 UHF Signal Generator
470.960 MHz
TF2100

$$
\begin{aligned}
& \text { RECORD } \\
& \text { BRUSH }
\end{aligned}
$$ triangle, single shot with variab M 5118 Function Generatsor. Sine

square/triangle/pulse signals. Oftse square /triangle /pulse signals. Offse
-TL output. Stepepd and continuous attenuation. Frequency range $1 \mathrm{Hz-}$ z-
1 MHz \&
PM 5324 AM/FM Signal Generator

TELONIC 2003 Sweeper Main Frame o/w
$3302,3331,3341,3351,3360$ and $3302,3331,3341,3351,3360$ and
3370 modules. Frequency range 0-
300 MHz $£ 1150$ VS40 Sweep Generator. Frequency
range $1 \mathrm{MHz}-300 \mathrm{MHz}$.... $£ 650$
 T.D.R. System $140 B+1415 A$ 25MHz Portable D

$$
\begin{array}{|l|l|}
\hline 1 \\
\text { Ne } \\
\text { TE }
\end{array}
$$

OSCILLOSCOPE PROBES

REC

$$
\begin{aligned}
& \text { BRU } \\
& \text { Multi } \\
& 816
\end{aligned}
$$

$$
\begin{aligned}
& \text { RAA } \\
& \text { Stor }
\end{aligned}
$$

$$
\begin{aligned}
& \text { sHA } \\
& 6 \mathrm{Ch} \\
& \text { WA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAT } \\
& 6 \mathrm{Ch}
\end{aligned}
$$

$$
6 \mathrm{CH}
$$

SIGNAL
ADVANC ADVEANCE
J2 Oscillator
Oscillator
... ${ }^{\text {£90 }} 140$ D.V.M. PM2423

SOUND LEVEL METERS BRUEL \& KJAER
Sound Level Meter 2203 GEnERAL RADIO GeNERAL RADLO
Portable Sound Level Portable Sound Level Meter, 1981 $1933 \& 1935$ Portabe Sound Level
Meter with data cassette reconde MISCELLANEOUS ADVANCE Power Supply PMA 50
$0-15 V 5 A$ selectable)
Power Suoply PM 53 Power Supply PM 53
$0-1510 \mathrm{~F}$
$0-1$ (selectable)
 BIOMATION
16 Channel Logic Anatyser 1650
$\ldots 4100$ BOONTON
True R.M.S. Voltmeter 93A
BRAD DC Voltage Calibrator 126B BRUEL \& KJAER
Electronic Voltmeter 2409 BRUSH

XY Ploter Model 500 DATA LABS | DATA LABS |
| :--- |
| Power Line Disturbance Mon . . $£ 550$ | PVMAR

R.F. Power Meter 1561 GRETSCH Complex Ratio Bridge CR
GENERAL RADIO Vibration Analyser 1911 (
HEWLETT PACKARD Camera 195 A
Camera 198A True R.M.S. Voltmeter 3000A 14505
16 Channel Logic Analyser 160 E50 AC Voltmeter' 400F
Wave Analyser 310 A LYONS
Pulse Generator PG22 MARCONI INSTRUMMENTS
AF Transmission Test Set TF AF Transmission Test Set TP $232 \ldots 45$
Quantization Distortion Tester TF $£ 4343$ Electronic Voitmeters TF2604
Q meter system TF1245/46/47
\&
 AM FM Mod Meter TF2300A RF Millivoltheter $1+2603$
Diff Voltmeter TF 2606
D. F. TMF A.F. Power TF 2331 . P.C.M. Regene. Tester TFF334
Quartiz. Dist. Tester TF2343
L.F L.F. Atten
o1d steps
PHILLIPS

Pulss Generator PM 5715
AC Millivoltmeter PM 2454 B Pattern Generator PM550
RHODE \& SCHWARZ Stereocoder MS
SOLARTRON

Advertisements accepted up to 12 noon Monday, February 25th for April
issue, subject to space being available

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm) NE advertisements (run on): $£ 1.50$ per line, minimum three lines. OX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointment service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician o Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary vels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware f your application.

JB ELECTROTECHNICAL
PERSONNEL SERVICES,
2 Mount Ephraim
unbridge Wells,
Kent. TN4 8AS.
Tel: 089239388
TJB

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London
Salaries up to $£ 8,000$
To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and
receivers for marine- and land-based use, radio navaids and radio receivers for marine- and land-based use, radi
monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receive design, analogue or digital circuit design, microprocessor applications
Sottware Designers should be experienced Programmers with an Software Designers should be experienced Programmers
interest in control, signal processsing or navigational software.
Attractive salaries are complemented by excellent prospects and
Contact: David Bird, Redifon Telecommunications Limited,
281 (reverse charges).

DATEK SYSTEMS LTD

SENIOR TEST ENGINEERS

Qualified to at least HNC with considerable experience in digital electronics
including some knowledge of machine language software.

JUNIOR TEST ENGINEERS

This position requires a young engineer with $H N D, H N C$ or C and G Full Tech Some experience of TTL logic or microprocessors would be an advantage, ides 4 weeks holiday and pension scheme.
Write or phione for application form to: Miss Bux, Datek Systems Ltd
Hat Harrow Road, Wembley, Middx. Tel. $01-904$

Our channels are open for communication

The sophisticated communications systems and ancillary services produced by
IAL help people all over the world to stay in touch. However, on this occasion, IAL help people all over the world to stay in touch. However, on this occasion,
we would like you to do the communicating: An increasing number of projects, embracing eventhing from mobile radio centres to all types of telephone telegraph and data switching centres, me
need add itional special ist personnel. It is in your interest to get in touch.

LECTRONICS TECHNICIAN University Colloge, London TECHNICIAN Grade 5 reauired in
connection with the setting-up connection with the setting-up
and day-to-day running of first
dit and day-to-day running of first
degree labaratory courses in
Speech Science. degree laborater
Speech Science.
Work involves helping students,
staff and patients; technically it is staff and patientst tecthincally it is
primarily eiectronic but some primariy electronic but some
Mechanical Workshop ex
perience an advantage perience an advantage, Applica-
tions in acoustic measurements: tions in acoustic measurements;
microprocessorsi; TV displays;
video and audio video and audio recording. New
Laboratory in the Department of on Laboratory in the Department of
Phonetics and Linguistics which
has an has an established technical
group with good existing facil group with good existing facil-
ities. Salary in range $£ 4,776$
f5,448 (further increase $1 / 4 /$ $£ 5,448$ (turther increase $1 / 4 /$
80), inclusive of London Weigh 80), inclusive of London weigh
ting). Applifation form from Per
sonnel Officer (Technical Staf $\left\lvert\, \begin{aligned} & \text { sonnel Officer (Technical Staff } \\ & \text { BB1), University College, Lon- }\end{aligned}\right.$ BB1), University College, Lon-
don Gower Street, London
WCiE.6BT.
 LABORATORY TECHNICIAN SUPERVISOR

领

,

SENIOR TEST AND CALIBRATION

 ENGINEERSWith a background in RF and microwaves, experie
techniques. logic and microprocessor controiled ATE.
TEST \& CALIBRATION ENGINEERS

We offer an exceptional salary \& Performance related bo

 Please write or phone to -Mr. Z. Eres (Technical Manager) extension 43
tectronic Instruments \& Commu
aveley $\quad \begin{aligned} & \text { Roebuck Road } \\ & \text { Chessington } \\ & \text { Surrev }\end{aligned}$
electric เто $\begin{gathered}\text { Surrey KT9 } 1 \\ 01-3978771\end{gathered}$

WEST YORKSHIRE METROPOLITAN COUNTY COUNCIL

RADIO ENGINEER

Post Ref: ES 38004

Salary £5,220-£5,547
Radio Engineer to plan and supervise changes to its network of 320
vehicle-mounted radios, 5 VHF transmitters, 14 UHF Links and vehicle-mounted radios. 5 VHF transmitters. 14 UHF Links and numerous Land Lines; to let contracts for radio-telecommunications
instalatitions and repairs, to organise a false eroprting service and
ind steadily improve the benefit/cost ratio of the mobile-radio system,
An HNC Certificate or equivalent is desirable but experience of
mobile-radio system design, Post Office Line techniques and Home mobile-radio system design, Post Office Line techniques and Home
Office Regulations are most important. The knack of maintaining good Office Regulations are most important. The knack of maintaining good
personal relationships is essential and a knowledge of PYE Radio-
elecommunications would be an avantage pelecommunications would be an advantage.
tel
A. H. Evans (Wakefield 67111 Ext: 3536) will answer queries Application forms from Room 238 , Directorate of Planning, En-
gineering and Transportation, County Hall, Waketield to be returned gyneering anc 7 Marth 1980 .
by

\section*{HNC Level Engineers~

(Electrical or Electronic

(Electrical or Electronic

Train for the future as a Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities. We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all
over the country. ver the country
opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course licence is required but if yould wo not be paid during the course. A full driving arranging and paying for instruction.
On the satisfactory completion of the training programme, your salary will be 5,880 per annum and then rise annually to $£, 280$ per annum, with further progression to $£ 8,202$ per annum. (During the training period you will receive At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition - all of our Regional engineering managers started their careers at transmitting stations.
Employment benefits include Free Life Assurance and Personal Acciden chemes, a Contributory Pension Scheme, generous relocation expenses
Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court, Winchester,

INDEPENDENT BROADCASTING AUTHORITY

Electronics Technician

Space Research Projects

An Electronics Technician is required by the Rutherford and
ppleton Laboratories to work on the instrumentation of rocket-born scientific experiments making measurements of the upper atmosphere digital and analogue circuits and the assembly of experiments; the integration of experiments with rocket and telemetry systems; the calibration and environmental testing of equipment; the carrying out of
pre-launch assembly and final check-out of the experiments on the pre-launch assembly and final check-out of the experiments on the
launch sites. The work will involve collaboration with the Universit launce sites. The work will involve collaboration with the Unithers successful candidate will be expected to travel occasionally to rocket
ranges in the UK and aroad for periods of a few weeks. ranges in the UK and abroad for periods of a few weeks.
The vacancy is as Professional and Technology Officer Grade III level. Applicants should have at least ONC or a TEC/SCOTEC
Certificate with a minimum of 4 years experience including the design, Certificate with a minimum of 4 years experiance including the design,
construction and operation of analogue and digital circuits. The Salary scale is under review but currently. stands at $£ 5309$ -
$£ 5876$ inclusive of Outer London Weighting Allowance. There is a non£5876, inclusive of Outer London Weighting Allowance. Thert ${ }^{\text {ens }}$,
contributory pension scheme. The post will be located at Ditton Park, contributory pension scheme. The post will be located at Ditton Pa
Slough until mid 1981 when it is anticipated that the work will be Slough until mid
transferred to the Laboratories' site at Chilton, Oxfordshire. from. Please request an application form, quoting reference VN5017 Mr.
Mrs Jane Williams, Rutherford and Appleton Tel: Abingdon (0235) 21900-Extension 510.

Rutherford and Appleton Laboratories

Royal Military College of Science, Shrivenham
Lecturers/Senior Lecturers Electronic Engineering

The College is a residential establishment, running first
degree and degree and postgraduate CNAA courses, Army Staff courses and specialist courses, for both civilian and military
students. It has an academic staff of over 100 , whose
duties are similar to those of University Lecturers. There are duties are similar to those of University Lecturers. There are
comprehensive laboratory, computing, workshop and library facilities, and staff are given every opportunity to
become involved in research and development work, and become involved in rese
read for higher degrees.
The Electronics Branc
read for higher degrees.
The Electronics Branch is responsible for instruction in the principles of electronic devices, the fundamentals of signal transmission and processing, and in the applications
of these topics to telecommunications, radar, telemetry and of these topics to telecommunications, radar, telemetry and
radio guidance. The Lecturer(s) appointed will be expected to take an interest in one of the topics listed above, but the
to
post posts will be mainly concerned with digital electronics and
signal processing. For further information contact Professor signal processing. For further informa
Hill. Shrivenham 782551 , ext. 290 .
Candidates must have a first or second class honours
degree or equivalent in electrical enginering or applied
physics (with electronics). Experience in the field of
electronics or communications is desirable and preference will be given to candidates with experience in the design and application of modern digital electronic systems including microprocessors.
Appointment will be as Senior Lecturer ($£ 6330-£ 8705$) or Lecturer ($£ 4210$ - $£ 5485$) according to age and experience.
At least 4 years' post graduate experience is necessary for At least 4 years' post graduate experience is necessary for
appointment as Senior Lecturer. Starting salary may be appointment as Senior Lecturer. Starting salary may be
above the minimum at each level. Non-contributory pen sion scheme and promotion prospects to a salary of
$£ 11,000$ and above. Accommodation may be available for single staff and housing formmarried persons.
For further details and an and For further detailis and an ap persations. form (to be
Feturned by 14 March 1980) write to Civil Service Com returned by 14 March 1980) write to civil Service Com
mission, Alencon Link Basingstoke, Hants. RG21 mission, Alencon Link Basingstoke, Hants. RG21 1 JB , or
telephone Basingstoke (0256) 68551 (answering service telephone Basingstoke (0256) 68551 (answering service
operates outside office hours). Please quote reference
$\mathrm{S}(\mathrm{C}) 908$.

ENGINEERING
There is a vacancy for an
ELECTRONICS
WORKSHOP TECHNICIAN to work in the above Department. The
douties of the post
construction and mill include the
coditication of
 teaching and research work. Servicing
and $\begin{aligned} & \text { erepair of a wide range of equip } \\ & \text { ment isa }\end{aligned}$ also a requirement. Applicants for the post should have,
an appropirat o NC or er equivalent
qualificatian an appropriate oNC or equivalent
qualitiction ond not tess than sevent
year trievant
gineering Year's rete
gineering.
Salary scale £3996 to $£ 4668$. Grade
5 (too be reviewed in Apri
I980) with

APPOINTMENTS ELECTRONICS £5-£10,000 Take your pick of the permanent posts in:
MISSILES Aadar COMPUTERS MICROPROCESSOR
HARDWARE - SOFTWARE
 Technomark

In Electronics, there's Good and UHRA Good.

UEL have established a

formidable international
reputation for the reputation for the innovation
and manufacture of advanced and manufacture of advanced
technological equipment. By applying their engineering ability in a highly sophisticated and creative way, UEL have been awarded
numerous long term contracts for which they require a diversity of talented personnel. Because of the high standards employed in
these projects, we are these projects, we are following experienced people.

Electronic Development Engineers £5000-モ6500
of 2 years development experience int, with a minimum
of 2 years development experience in an electronic
laboratory.
A knowledge of Radio Frequency and Analogue Circuit
Design is necessary (ideally on MOD project work). Design is necessary (ideally on MOD project work).
Working within a close knit team, you will report to a Proiect Engineer and be assisted by laboratory
technicians. technicians.
*A specific vacancy also exists for a Test Equipment
${ }^{\text {Design }}$ Engineer ${ }^{\star}$.

Quality Engineer

Y4500-£6000
You should ideally be an experienced Quality Engineer,
but suitable Inspectors or Test Engineers wold
but suitable Inspectors or Test Engineers would be
considered. Holding at least an ONC, you should have a
considered. Hond of English combined with some
good command
mathematical ability. Responsibilities include
At UEL you will work in a small group environment and can look
forward to a stimulating and emanding job with good career prospects. There are many
benefits - sports and social club benefits - sports and social club,
contributory pension scheme, 22
days days annual holiday, subsidised onus. If you feel you are one of the few
who can help by injecting a who can help by injecting a expertise and enthusiasm, we
would be pleased if you'd would be pl.
contact us.
To find out To find out more, please ring
Gavin Rendall on 01-578 0081 . development of quality procedures for new product
ranges and htemintenance and development of existing
product qual ity.

llra Electronic
Commurications. Lid

CT

SALES ENGINEER

Public Address System

EXCELLENT PROSPECTS-A Public Address Sales Engineer with wide experience is ${ }^{\text {re }}$ quired to head up the Vortexion Division of
this Company.
The applicant must be experienced in this field, prepared to handle sales enquiries through to the wiring and installation stage, also to develop and expand the sales of Agents / Distributors in the UK. In this position he/she will be responsible to the Sales Manager
The successful applicant will be self motivated, with a professional approach and later in export markets.
An excellent career is assured, togethe An excellent career is assured, together
with negotiable salary/ commission, company car, incurred expenses, BUPA Plan, and a good working environment in the experience and a desire to carry out a job well is paramount.
Applications should be addressed to: Per-
sonnel Manager, Clarke sonnel Manager, Clarke \& Smith Mfg Co Led, ington, Surrey SM6 8SD. Tel: 01-669 4411, ext 32.

CLUNKCLUNK, BUZZBUZZ, SWISHSWISH SIZZLESIZZLE, YUMYUM, BRMMBRRM.. Not going mad - yet - just tuning in to hi-tech, '80s

TwiddleTwiddle, SwitchSwitch, SloopSloop DingDing.... Time to get up and
Ring: CHARLES AIREY ASSOCIATES

CURRENT VACANCIES INCLUDE

 Compuruer Enginoeror for either rechnical support, field sevice, permanent site or systems
lest. vacancies htroughout the UK. For furrher detais stc.
Charles Airey Associates 4 A Ammersmith Grove LLondon W6 ONA. Tel: 01.7414011

Appointments \qquad
${ }_{138}$
WIRELESS WORLD, MARCH 1980 IMPERIAL COLLEGE DEPARTMNT OHFOMPNTING
AND CNTROL Applications are invited fora ${ }^{\text {a }}$,
RESEARCH ASSISTANT
 Munication techniques for distsibution
process sontrol besed on
4SI II micrococomputers. Candidates should have a degree in
Computer science or digititel elec-
 in computer communications. did
tributed pocossing. on real-time
or micro computer systers.

 Applications, includ ing curriculum
vitazand tene names and dadrosses
two
 Queensgate, London SW7 282, from
whon additional information can be
obtained.

Electronics Engineers Donotmissthis opportunity!

Apply your inventor's ingenuity in designing, developing complex communication systems for commercial and military use over the next decade and beyond.
Our work demands a dedication not normally experienced in an electronics manufacturing environment. Highly skilled qualified men and women ar needed to make a useful contribution in any of the hardware/software below
Digital Design
Micro-Processors
Circuit Design
UHF/VHF Development
A/DSignal Processing ECM and ECCM
Systems Analysis

Electronics
 Company Car

Linotype-Paul field technicians install, commission and service real time high technology systems for the printing/publishing industry. Our technicians can think logically, work alone and provide a timely, accurale service. Because they also have to be diplomatic, tactful and friendly.
We want to build our team with men and women who are qualified to ONC level and have several years experience on electronics equipments which we will complement with progressive product
We provide a competitive salary and generous expenses and benefits: As there is considerable travel, sometimes involving overnight stays, a company car is provided which is avalable for private use. In time there may be the opportunity to work abroad for short periods.
prospects prospects could not be better.
Ifyou are interested contact: Personnel Department, Linotype-Paul Limited, Kingsbury Road, Kingsbury, London NW9. (01-205-0123)

Linotype-Paul

I

Send a brief C.V., give me a ring to arrange an informal chat with one of our Senior Engineers, or just complete the coupon and send it to me for further information.
Jack Burnie, Marconi Space \& Defence Systems Limited, Browns Lane, The Airport, Portsmouth PO3 5PH, Tel: Portsmouth 699414.
Name
Address
Marconi
Tea of Interest
Tel

A.V. AND VIDEO SERVICE ENGINEERS
We require service engineers with
specificic experience of Trape Slide systems enpdrience ove ore. Salata
ding to age and experience.

Contact: Mr. J. Histon
KADEK VISION LIMITED Shepperron Studio Cen
studios
Road

Appointments

Test Engineers

Pye Telecommunications are a well establishéd company, involved in the field of radio communications, both at home and overseas. The Pye trademark is synonymous with systems
are highly reliable. To ensure that reliability, we need Test Engineers to check our VHF UHF systems to very exacting Engecifications prior to delivery

We are looking for skilled men and women with experience of fault diagnosis, alignment and testing of electronic equipment, preferably communications equipmen Formal qualifications are desirable, but experience would be
sound practical ability. Armed Forces exper particularly acceptable.

We can offer you job security and long term career opportunities, both within the company and the Pye and Philips Group as a whole. Our salaries are competitive and we offer up to five weeks' annual holiday. Attractive additional benefits include contributory pension scheme, good canteen facilitie

If you are interested please contact: Jane Easy, Personnel Department, Pye Telecommunications Limited, St. Andrew's Road, Cambridge CB4 1DW. Tel: Cambridge ye Telecom

ELECTRONIC
TECHNICIANS
PROOUCTION
RESEACH \& DVVIDPMENT ARCH \& DEVELOPMENT
and SEVVIIIMG OXFORD OXFORD
c $£ 5,500$

on On orfort 43244
for an application fon

(CA) GAPITAL

FREE JOBS LIST Field service fongineers

30 Windmill Street. London, w1
TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Free Comms,
service.
Phone or write: BUREAUTECH, Phone or write: BUREAUTECH,
AGY; 46 SELVAGE LANE, LOND
0251.

Test Development Engineer

Our Test Projects Section has an opening for a Test Development Engineer. In this job he/she will be developing practical production test methods for our broad range of integrated circuits.
The work covers evaluating test methods with the designers and producing test hardware and software, through to the production of efficient test facilities for use on sophisticated computer-controlled test equipment. This requires interfacing offers a unique opportunity for those who wish to broaden their knowledge of electronics.
Applicants must have a minimum qualification of HNC plus a practical engineering background.
Write or phone for an application form to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon, Wilts. SN2 2QW Tel: Swindon 36251.

PLESSEY

Electronics Engineers

Linotype-Paul is in the process of expanding its Test Engineering facility throughout provision of additional sophisticated ATE facilities provision of additional sophisticated ATE facilities.
who may wish to become involved in ATE Programming ience of digital electronics who may wish to become involved in ATE Programming. Ideally some previous good hardware experience in logic techniques will Electronics Engineers having good hardware experience in logic techniques will be provided full appropriate programming training
their first industrial appointment Vacancies also existfor Enginers
Vacancies also existfor Engineers and Technicians to provide a wide range of duties
on sophisticated digital equipment. The above posts are oquipment.
Assistance with relocation will be men and women
Assistance with relocation will be provided where appropriate
Please write to the Personnel Department, Linotype-Paul Ltd , Runnings Road,
Cheltenham. Telephone Cheltenham 45001.

Linotype-Paul

Electronics R\&D

Join us in the forefront of technology

Take your pick

HF-VHF-UHF-

Microwave Optics \& Acoustics A challenging and full career in Government Service
Minimum qualification - HNC. Starting salary up to $£ 6,737$. Please apply for an application form to the Recruitment Officer (Dept.WWI), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

Appointments
hireless world. march 1980

WIRELESS TECHNICIANS

We reauire staff, male or female, to prepare and
maintain the latest in communications euaipment maintain the latest in communications equipment
ussd bib the Police and Fire Brigades in England and
Wales used by
Wales.
You will need to be qualified to at least City and
Guilds Intermediate Telceommunications standard and be able to demonstrate practical skills in locating
and diagnosing fuuts in a wide range of eacuipment and diagnosing faults in a wide range of equipment
trom computer based datata transmission to FM and AM radio ssstems. You would live near to and work
from one of our service centres located at Andover,
 Hants; Bishops, Cleeve, Gloucs; Hannington,
Basingtoke, Hants; Shapwick, Somerset; Harrow,
Middlesexe.
Specialised courses or training are run to assist staff
to keep up to date with developments and new equipment and there are opportunities for day release
to gain higher qualifications. Applications from to gain higher qualiitiations. Applications
registered disabbed persons will be considiered.
Promotion prospects are good and the work repre-
sents a secure future with generous leave allowance sents a s scurres futur w with generous le
and non-contributory pension scheme.
Possession of a diving licence is essential since some
The salary scale is as follows:- $£ 3900 ; £ 4160$;
$£ 4420 ; £ 4680 ; £ 4940 ; £ 5200 ; £ 5530$.
If vou are interested in working with u, t,
further detais and application form to:
Mr. C. B. Constable, Directorate of Telecommunications. Horsefery House, Doan Rrle Streat, London
SW1P 2 AW. Telephone $1211-5293$

TN

TRAINEE BROADCAST ENGINEERS

 Eisstly, we need you

Athera training period of of nine monhts y you would be emploved on the operation

within the
nterested.

SCOTTISH HOME AND HEALTH DEPARTMENT

WIRELESS TECHNICIAN

Applicitions are invited for one post of Wireless Technician in the
Soctitisis Home and Health Deparatment.
Location:
Location
The post is in
qualifications:
Candidates must hold an Ordinary National Certificate in Electronic or Electrical Engineering or actity and Guilds of London nstitute
Certiticate in an appropiate subiect or a qualification of a higher or Certiticate in an apo
equivalent tsandard.
EXPERIENCE:
$\underset{\xi}{\text { STARTING SALARY }}$

Applicants should have sound theorerital and practical k nowledge
of Radio Engineering and Radio Communications equipmentin $\overrightarrow{H F}$.

 quarters. Acrean current iriving icental
and commercial venicles are essential
The apoointment is unestablished initially but there is prospect of
an estabisished (i.e. permanent) appointment atter 1 year's saistactory service
Application forms and further information are obtainable from
Scotish Office Personnel Division, foom 110 . 16 Waterloo Place.

Closing date for receipt of completed application forms is 18 April,
1980 .

DRG
Flexible Packaging (DRG)

INSTRUMENTS \& ELECTRONICS SUPERVISOR

DRG Flexible Packaging is one of Europe's largest converters of protective packaging
plant and machinery.
There is a vacancy for a Supervisor in the instruments and electronics
section of the engineering department. The section consists of six section of the engineering department. The section consists of six
electronics and three industrial technicians and is sesponsible for the
maintenance and development of industrial electronic equipment maintenance and development of industrial electronic equipment
including poote-lectric, process control and measuring eupipment
and machine drives. The section works mainly double shift although it
 serves a treble shift factory) but the Supervisor's job is a day position.
The successtul ppplicant will have had severa lears experience in
electronics and hold a relevana qualification such as City and Guilds electronics and hold a rel
Full Technical Certificate.
The Company offers a competitive salary, 4 weeks holiday a year, a
contributory pension scheme and other benefits associated with contributory pension schem.
working for a large company.
Applications should be made in writing, giving brief career details and
current salary to:

> Mr. P. Hawkins DRG FLEXIELE PACKAGING Filwwod Road Fishponds, Bristol BS16 3RY

A Dickinson Robinson Group Company

R \& D Engineers

required to work on digital circuits for micro-processor based industrial and commercial systems.

The candidate should have a working knowledge of TTL and CMOS logic and have experience of programming at assembler language level for micro-processor systems.

Engineers should hold a degree / HNC or equivalent qualifications. Salary will be commensurate with

If you are seeking an enjoyable position involving iving your care to devare development, write

Dr. G. O. Towler
Dr. G. O. Towler
(New Product Development Manager) British Relay Electronics Ltd. 32 Biggin Way Upper Norwood London, SE 19

SENIOR ELECTRONICS ENGINEER

 GloucestershireThe Company, pleasantly situated on the
outskirts of Cheltenham, is a leading outskirts of Cheltenham, is a leading manufacturer of aircraft gas turbine fuel systems
and associated equipment. Our Electronics and associated equipment. Our Electronics
Laboratory has a vacancy for an experienced Electronics Engineer to join a small team engaged in the design and development of special purpose prototype instrumentation and control equipment
Applicants, male or female, educated to at least
HNC/HND standard or equivalent should have HNC/HND standard or equivalent should have practical experience in current digital and
nique
In addition to a competitive salary, we offer
excellent fringe benefits including a selfexcellent fringe benetits incluaing a self-
financing productivity scheme and excellen pension scheme. Generous assistance with relocation expenses to this desirable Cotswolds area will be given where appropriate. Please write giving details of career to date and salary expectations to: The Senior Personne Officer, Dowty Fuel Systems Ltd, Arle Court, Cheltenham or telephone: Cheltenham 21411 form.

RADIO OFFICERS

If your trade or training involves radio operating, you
qualify to be considered for a R Radio Officer post with the qualify to be considered for a Ra
Composite Signals Organisation.
A number of vacancies will be available in 1980/81 for
suitably qualified candidates to suitably qualified candidates to be appointed as Traine Radio Officers. Candidates must have had at least 2 years
radio operating experience or hold a PMG, MPT or MRG radio operating experience or hold a PMG, MPT or MRG
certificate, or expect to obtain this shortly. Registered disabled people may be considered.
On successful completion of 40 weeks' specialist training
appointees move to the Radio Office Grade. Salary Scales
Trainee Radio Officer Age 19 £ 3271 Age $20 £ 3382$ Age 21 £ 3485 Age 22 £ 3611 Age $23 £ 3685$ Age $25+£ 3856$

Radio Officer Age 19 £4493 Age $20 £ 4655$ Age $21 £ 4844$ Age 22 £4989 Age 24 £5559 Age $25+£ 5899$
ments to $£ 7892$ inclusive of
shitt working and
Sunday elements.
For further details telephone Cheltenham 21491
below.

ELECTRONIC ENGINEERS

MR. M. S. SCED

Appointments

How to cut through the old boy network

You can't possibly
ments by yourself.
Ans yourself. cover all the job advertise And what about all those jobs that are never
advertised beccuse other good people hear advertised because other good p.
about them first?-YOU MISS OUT. Break into that closed circle by enrolling with
nsdowne. We'll thump your career details onto Lansdowne. We'llt thump your career details onto
the desks of senior managers at thousands of the desks of senior managers at thousands
companies - except those you ask us not to They'Il
They'II consider you for the immediate jobs
and they'Il have you on file for the future. When they want you they'Il ring you - not us

- and you're immediately shortisted for a job - and you're immediately shortist.

Just fill in the coupon and send for our
Summary Form and explanatory leaflet. And do it at once because it's the And do it at onse because it's the only one
that's worth thousands of applications. Stuart Tait, Lansdowne Appointments Register,
Design House, The Mall, London W5 5is. Design House, The Mall, London W5 5LS.
Tel: $01-5792282$ (24 hour answering service)
 earning betwertio00-t8,

CALIBRATION ENGINEERING ELECTRONICS ENGINEERING \square ELECTRONICS SALES
-Mr./Mrs./Miss
Address
ents Register Stuart Toit, Lansdowne Appointments Reg
Design Huse, The Mall, London W55LS.
【ansdowne

PHILIP DRAKE

Systems Engineers

Senior

 Electronics Liaison Engineer c. $£ 8,500$ p.a. + car Blackpool Telefusion, the highly successful multi-million pound Groupof companies, is developing new areas in which to use its of compa
expertise.
A separate Division has been set up to install and maintain a range of sophisticated computerised till terminal units used cash and stock transaction
We are now seeking a Senior Electronics Engineer to control through a small team of technicians the installation and maintenance of these terminals throughout the U.K. He or she will also be required to negotiate contracts at a senior lever
with equipment manufacturers and potential clients. Ideally, aged from mid-thirties, candidates should posses a minimum HND in electronics or equivalent qualification and have detailed knowledge of micro electronics techn
(preferably $8080 / 8085$) also disc drive units and high (preeerabry $880 / 8 \mathrm{Cx}$) also disc drive units and high
speed printers. Experience or an interest in programming techniques would also be an advantage. The successful candidate will be based at the Group Head
Office and report to the Director responsible through the Office and report to the Dire
Group Technical Executive.
Candidates should write giving deta
qual ifications and career to date, to
R. M. Beaton, Group P
Telefusion Limited,

Telefusion Limited,
Telefusion House,
Telefusion House,
Preston New Road,
Blackpool FY4 40Y

TELEFUSION

Electronic Engineers

Worldwide Airborne Surveys Our Engineers prepare electronic sensing and digital recording systems at U.K. base for eventual in-flight
operation by themselves in fixed and rotary winged aircratt engaged on overseas geophysical projects Typical overseas project duration is between 2 to 6 months.
A wide spectrum of electronics is covered with a growing emphasis on microprocessor based devices.
Qualifications or experience to HNC standard Qualifications or experience to HNC standard
together with a flair for fault diagnosis, solving together with a flair for fault diagnosis, solving
interfacing problems and mechanical packaging interfacing prob
Persons interested in joining our teams or who require further information should apply to:

The Personnel Manager, Hunting Surveys
\& Consultants Limite Elstree Way, Borehamwood娄 Elstree Way, Bore
Herts, WD6 1SB.

CALLing ALL ENGINEERS up to $£ 19,000$
 per contract year after tax

 The Communications Department of Aramco Saudi Arabia, urgently rer, based inSarld's largest oil produces Saudi Arabia, urgently requires
MICROWAVE ENGINEERS experienced in microwave system project management and design, following: Telephone, mobile radio, analog-digital communications and control systems.
UHF/VHF ENGINEERS experienced in mobile UHF/VHF systems project management and design and practical experience in one or more of the following: Microwave, telephone, analog-digital communication
and control systems.
SENIOR FIELD CONSTRUCTION SPECIALISTS SENIOR FIELD CONSTRUCTION SPECIALISTS/
FIELD CONSTRUCTION SPECIALISTS to install and commission electronic instrumentation and data acquisition systems. Experienced in trouble shooting complex digital electronics at the system, card and component levels. Familiarity with electonic test
equipment, digital diagnostic test procedures and equipment as applied to mini-computers and/or other digital systems.
PLANNING \& SCHEDULING ENGINEERS to evaluate schedules, implementation and control analysis and, if necessary, initiate corrective action. There are also requirements for Engineers \& Technicians
in INSTR M MENTATON. ELECTRICAL \& ELECTRONICS disciplines, $\mathrm{f} 414,500-£ 19,000$

All positions require at least HNC and 10 years
experience experience.

- Renewable contracts, single status
- 12 days Public Holidays per year.
Leave for married men $-14,14,25$ days after
each 4 month period per contract year.
- Leave for single men - 30 days after 12 months
- Free Medicare.
- Valid U.K. Driving Licence essential

Switch to a new wavelength with
write with career details quoting ref: $w w / 2$

MANAGEMENT SERVICES LIMITED
S. East Parade, Marrogate. North Yorkshire HG1 LLF.

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of
innovative design is used on our range of innovative design is used on our range of
communications test instruments and A.T. number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
if you are interested to hear more please fill in th following details:-

DEVELOPMENT ENGINEER

To work on the design of new broadcast TV studio products. Applicants should have some knowledge HND or Degree level

TEST

ENGINEERS

At senior and intermediate level to work on our range of advanced broadcast television studio television studio cameras
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

SYSTEMS ENGINEER

You would be involved in all stages of product management on the design and building of studio
and mobile TV systems and should be prepared for and mobile TV systems and should be prepared for
occasional world-wide travel. The appointment requires someone with a background in this type of work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative
Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation
expenses
Please apply for further details and application forms to Jean Smith at the address given below.

D N $\begin{aligned} & \text { Link Electronics Limited, } \\ & \text { North Way Andover, }\end{aligned}$ North Way, Andover
Hants, SP10 5A).
ELECTRONICS Telephone: (0264) 61345

MEDIA RESOURCES CENTRE GLYN HOUSE, CHURCH STREET, EWELL The Centre is within easy, reach of main line railway stations and
on bus outes. conveniint for shops. There is a mple free
parking available on site.
Field Service

Engineer

(Electronic A/V Equipment) (M/F)
To carry out on-site service, including fault finding, on schools
 installations, radio systems, Hi Hi-i, etc.
Some of the time, you will be engaged in bench service at the Some of the time, you will be engaged in bench service at the
Centre workshop. Experience in the maintenance/ repair/faul
diaposic Centre workshop. Experience in eho is issential, and practical
diagnosis of some, or all, the above
experience is vital. You should possess City \& Guilds or ONC
Installation/Field Service Engineer

To carry out installation/repair work of school fixed A/V
systems, wiring of radio lines, aerials (not roof work), language systems, wiring of radio lines, aerials (not roof work), Ianguag
laboratory trunking, etc. This will involve installing screens
lat laboratory trunking, etc. This will involve installing screens in
school classroom (driving walls, etc.) installing study carrels,
etc.,. relocating language taboratories, moving all services, etc., relocating language laboratories, moving all services,
furniture, etc. and reinstalling in new positions. Also some
bench work at the Centre, dealing with repair of some A. items. You should posssess ONC on clity \& Guilds and practical
exp experience of installation
knowledge of A / V systems.
Applicants will be expected to use their own transport for travelling to establishments - an appropriate car allow
ance is payable.
Application forms from Mrs S. Soode,
Officer at the Contre, Tel: $01-393$ O208.

MIDDLE EAST

Precision Measuring Equipment Technicians
The Northrop Corporation, a major US aerospace company, is seeking experienced personnel for their
at a number of locations in Saudi Arabia.
Qualified to C \& G/ONC or equivalent, you should have at east 5 years' laboratory experience on the calibration añ testing of avi
This is an opportunity to secure a sound financial future for yourself and to become involved with the latest developments in electronics technology. The employment package includes:
$* 1$ year renewable contract $*$ Good bachelor accommodation $* 1$ year renewable contract $*$ Good bachelor accommo
$*$ Regular home leave $*$ Excellent recreational facilities Please contact us quoting ref. 84 PMT.

International recruitment consultants. 45 KENSINGTON HIGH STREET, LONDON W8 SED.
TEL: $01-937$ 6586. TELEX: 21879 ATT WEBB WHITLEY.

Opportunities for Radio Hazards and Microwave Engineers

At EMI Electronics Ltd. Feltham, we are involved in the design and development of
high technology equipments. Thanks largely high technology equipments. Thanks largely
to the high calibre of its staff, the Company is already a recognised authority in this sphere and is rapidly gaining an Interational reputation for its specialized equipment and expertise.

Radio

Frequency Engineers
To join the existing team engaged in work requency characteristics of a variety of weapon systems. The work currently in hand includes the definition of user require ments, the generation of new analytical and measurement techniques, the develop frequency and analogue instrumentation
and the performance of field trials.
We are looking for engineers with a elevant degree or equivalent qualifications together with up to five years' post-degre experienced graduates with an interest in this exciting field.

Microwave Development

 EngineersTo join our radiation laboratory for work on the design and development of microwave components, aerials and systems for ground and airborne applications graduate engineers with one or two year post-degree experience in an appropriate field. New graduates with a good degree in physics or electronic engineering and who
are looking for an exciting career in the are looking for an exciting career in the
microwave field are also invited to apply.
EMI offers competitive salaries of circa $£ 7,500$ for the senior posts, excellent experience and career prospects as well as good employment conditions and substantial fringe benefits. Relocation expenses will be paid where appropriate.
To apply, telephone or write to Lisa Kleinhorn, Personnel Officer, Victoria Road, Feltham. Middllesex (NO STAMP REQUIRED). Tel: 01-890 3600 ext 117 or 01-751 0702

EMI
EM Electronics Limited, Feitham.
A Member of the THORN EMI Group.

ELECTRONIC
 SERVICE ENGINEERS
 LONDON - BRISTOL - MANCHESTER - GLASGOW Our Company specialises in both sales and servicing of Our Company specialises in both sales and servicing of Discotheque Sound and Lighting equipent. We currently have vacancies for engineers who have had previous exhave vacancies for engineers who have had previous ex- perience of either Hifi. Studio PA or similar equipment. perience of either Hifi, Studio PA or similar Excellent salary plus quarterly bonus and P.P.P.
 Please telephone for further details.

Roger Squire's Barnet Trading Estate
Park Road Barnet,
Herts Herts. EN5 5SA
Telephone: 01.411919

TELECOMMS ENGINEERS TECHNICIANS

for Saudi Libya Nigeria

Salaries to $£ 22,000$ p. a.
for degreed Switching Engineers. External Plant Engineers. Microwave and Mux
Engineers. Minimum qualifications must be BSc or equivalent.
Salaries to $£ 12,000$ p.a.
for Telephone Technicians with digital P ABX experience, Radio Technicians.
Telepriniter/ Teelex Installation and Repair echnicicins.
All salaries are paid tax-free plus accommodation and transportation.
ADVANCE PERSONNEL SERVICES LTD. (Agy) The White House, 12A Lodge Road, HI

RF pollution control wasn't so critical in the first crystal age

Electronics Engineers/Physicists

to specialise in interference technology

Develop your career and make a significant
contribution to the control of electrical noise by moving into the increasingly important
field of interference technology with Plessey field of interference tec
Assessment Services.
Pleasantly situated in purpose-built laboratory units at Titchfield, Hampshire, we're a wellestablished and rapidly expanding test house
and consultancy offering in-depth specialist and consultancy offering in-depth specialist
services to a wide variety of Government and
industrial organisations. services to a wide variets
industrial organisations.
Strengthening an existing team of experts in
one of the most advanced computer-aided testing facilities in Europe, you'll be
responsible for evaluating the effects o responsibe for evaluating the effects of
across-the spectrum electro-magnetic interference
equipment.

Ideally, you should have analogue or
digital experience, together with a relevan qualification, and knowowledge of fario
frequency measurement techniques.
Lack of experience in interference technology
Lack of experience in interference technology
should not be a bar to applicants since training can be arranged.
There are opportunities at all levels from Assistant Engineer upwards with salaries to suit up to $£ 7,500$, plus benefits including
generous relocation expenses where generous relo
appropriate.
Contact Richard Wyatt, Recruitment Contact Richard Wyatt, Recruitment
Manager, on Titchffield 032943031 or write to him at Plessey Assessment Services
Limited, Titchfield, Fareham, Hampshire,
-
PLESSEY
assessment services

:
 LECTURER GRADE I

the appointn
sille.
sint
sin the thent
in tho

development of dovices and and
warandidates (M/P) should
oroven

Callbration and Maintenance Engineer

- Do you enjoy working with digital and
- Can you maintain, calibrate and program
- Do you have ONC, HNC or something similar
in Electrical/Electronic Engineering-or can you match it with relevant experience?
- Are you looking for more technical and professional challenge and an environment
where an ambitious product development programme is investing no less than £2 million in new test facilities for the 80s? If the answer is "Yes", you could be the man or
woman we need to join the small metrology team
based at the Brighton manufacturing plant of ITT Creed, Part of ITT Business Systems Group Ltd., already one of the leading names in data comms - and
fast becoming a world leader. There will be occasional fast becoming a world leader. There will be occasional
travel to other ITT locations: a current driving licence travel to other ITT locations: a a curre
would be useful.

Salary is attractive, there's an excellent range of benefits- and our location offers the pleasant
choice of living by the sea or in the countr choice ofliving by the sea orin the country. For an application form and more information,
please contact Hazel Johnson, ITT Creed Limited, Hollingbury, Brighton BN1 8AL
Tel. Brighton 507111 Ext. 3521. Outside office hours please leave a message on our answering machine.
ITT Creed Limited

RTICLES FOR SALE
 ticles for sale

THE MODERN BOOK CO. 19-21 PRAAEE STREE LONDON W2 1 NP

TE
\qquad

Wireless worlo, march 1980
senvic

\qquad

Brand New -

1 三- = ELECTRONIC

Brand New - Top Quality Performance \& Value	
HM 307	HM 312
Single Trace DC-10	Dual Trace DC-20 MHz,
$\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$.	$5 \mathrm{mV} / \mathrm{cm}$. Sweep Speeds
Plus built-in	
Component Tester.	cm Display.
E149	(

Other models up to 50 MHz bandwidth availible. Price
and full specs on request. Full demonstration at our and full specs on request
premises. Quick delivery rices do not include VAT (15\%\% or Cariage.
WW - 125 FOR FURTHER DETALLS

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 133-151

	H.H.Electronic \quad Page	Quantum Electronics ${ }_{\text {PagE }}^{18}$
Acoustical Mfg. 8 37		Quartzlock 114
A.E.L. Crystals \square		
Aero Elec (AEL) Ltd. ${ }_{10} 110$		
		Radio Components Specialists 109
Aspen Ltd ${ }^{\text {a }}$ 76	Industrial Tape Applications ${ }^{124}$	Radio Shack 108
B. Bamber Electronics 29		R.C.S. Electronics 100
${ }_{\text {Barrie Electronics Ltd }}$......................... 119	Interface Quartz Devices	
Bang \& Olufsen Insts. 26, 85		Sandwell Plant Lta
Bell \& Howell 35		Science of Cambr
BIB Hi-Fi Cover iv	K.A.C. Electronic Investment 102	Scopex Instruments Ltd ${ }^{113}$
Pak Semiconductors Ltd 107		Service Trading
	K.g.M. Ele	Shure Elec
Cambridge Learning (............................... ${ }_{31}$	Kir	SME Ltd. ${ }_{\text {Soft Ltd. }}$.a.
Carston Electronics Ltd 10, 11		Sonic Sound Audio 32,104
Case Systems	Larsholt Electronics	Sota Communications
	Lascar Electronics	Southern Electronics 108
C.M. Electranics 116	Leevers-Rich Equip. Lta 100	Special Products Ltd
		Strumech Eng. Ltd. ${ }_{34}^{18}$
Comp Computer Comps.		
Continentai specialities 19		Swanley Electronics Ltd 106
Cropico Ltd 22	Maplin Electronic Supplies Cover iv, 13	
Datong 32	Marshall, A. \& Sons (London)	
Display Electronics ${ }^{125}$		Tecknomatric (Telequipment) Cover ii
Dominus 119	Medelec	eradio Electron
	Microcircuits Ltd.	
Electronic Brokers Ltad 129, 130, 131, 152		3M (United Kingdom)
Electro-Tech Comps ${ }^{121}$		Thurlby Electronics
Electrovoice 116	MTL Microtesting lid. 119	
Elvins/Dalston 108	Multicore Solders Ltd	Valradio Ltd.
Faircrest Eng Ltd 108		Vero Speed
	Newbear Computer Stores Nicomtech	Vero Systems 24
Feedback Instruments ${ }^{86}$		Videotone Loose insert
Fielatech Flight Link Contril \ldots	Olson Electronics 16	
Fylde Electronic Labs Ltd. 23	OMB Electronics	
		West London Direct Supplies
Happy Memories		mot Breeden Electronics Ltd.
Harris Electronics (London) Ltd 23,37	Powertran Electronics 115, 122, 123	Wilmslow Audio 103
Hart Electronicsii 111	Practical Computing	
	Pye Unicam Pype Hayes Radio 106	Z. \& I. Aero Services Ltd 36, 112
OVERSEAS ADVERTISEMENT AGENTS: France \& Belgium: Norbert Hellin, 50 Rue de Chemin	 	Mr Jack Mentel, The Farley Co., Suite 650 , Ranna Buididing, Cleveand, Onio 4415 - Telephone: 12160,621919 :
	Unitad Statos of America: Ray Bares, IPC Business Press.	何
Budapest XIV, Varosliget.	61 - Telex: 421710.	Mike Loughlin, IPC Business Press, 15055 . Memorial Ste 119 Houston, Texas 77079
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6, 20154 Milan. Telephone: 347051 - Telexb; 37342 Kompass	Mi vicior A. Jauch. Elmatex Mnernational. P.O. Box $3460{ }^{2}$ 	Consultants Lid. 915 Cartion Tower, 2 Cartion Street, Torononto ${ }^{2}$. A - Tolopophone: subscrifition angenis

Wireless World, March 1980

[^0]: ww - 052 For further details

[^1]: WW - O45 FOR FURTHER DETAILS

